3 resultados para NOR
em National Center for Biotechnology Information - NCBI
Resumo:
Divalent cations are thought essential for motile function of leukocytes in general, and for the function of critical adhesion molecules in particular. In the current study, under direct microscopic observation with concomitant time-lapse video recording, we examined the effects of 10 mM EDTA on locomotion of human blood polymorphonuclear leukocytes (PMN). In very thin slide preparations, EDTA did not impair either random locomotion or chemotaxis; motile behavior appeared to benefit from the close approximation of slide and coverslip (“chimneying”). In preparations twice as thick, PMN in EDTA first exhibited active deformability with little or no displacement, then rounded up and became motionless. However, on creation of a chemotactic gradient, the same cells were able to orient and make their way to the target, often, however, losing momentarily their purchase on the substrate. In either of these preparations without EDTA, specific antibodies to β2 integrins did not prevent random locomotion or chemotaxis, even when we added antibodies to β1 and αvβ3 integrins and to integrin-associated protein, and none of these antibodies added anything to the effects of EDTA. In the more turbulent environment of even more media, effects of anti-β2 integrins became evident: PMN still could locomote but adhered to substrate largely by their uropods and by uropod-associated filaments. We relate these findings to the reported independence from integrins of PMN in certain experimental and disease states. Moreover, we suggest that PMN locomotion in close quarters is not only integrin-independent, but independent of external divalent cations as well.
Resumo:
The murine B29 (Igβ) promoter is B cell specific and contains essential SP1, ETS, OCT, and Ikaros motifs. Flanking 5′ DNA sequences inhibit B29 promoter activity, suggesting this region contains silencer elements. Two adjacent 5′ DNA segments repress transcription by the murine B29 promoter in a position- and orientation-independent manner, analogous to known silencers. Both these 5′ segments also inhibit transcription by several heterologous promoters in B cells, including mb-1, c-fos, and human B29. These 5′ segments also inhibit transcription by the c-fos promoter in T cells suggesting they are not B cell-specific elements. DNase I footprint analyses show an approximately 70-bp protected region overlapping the boundary between the two negative regulatory DNA segments and corresponding to binding sites for at least two different DNA-binding proteins. Within this footprint, two unrelated 30-bp cis-acting DNA motifs (designated TOAD and FROG) function as position- and orientation-independent silencers when located directly 5′ of the murine B29 promoter. These two silencer motifs act cooperatively to restrict the transcriptional activity of the B29 promoter. Neither of these motifs resembles any known silencers. Mutagenesis of the TOAD and FROG motifs in their respective 5′ DNA segments eliminates the silencing activity of these upstream regions, indicating these two motifs as the principal B29 silencer elements within these regions.
Resumo:
Rfp-Y is a second region in the genome of the chicken containing major histocompatibility complex (MHC) class I and II genes. Haplotypes of Rfp-Y assort independently from haplotypes of the B system, a region known to function as a MHC and to be located on chromosome 16 (a microchromosome) with the single nucleolar organizer region (NOR) in the chicken genome. Linkage mapping with reference populations failed to reveal the location of Rfp-Y, leaving Rfp-Y unlinked in a map containing >400 markers. A possible location of Rfp-Y became apparent in studies of chickens trisomic for chromosome 16 when it was noted that the intensity of restriction fragments associated with Rfp-Y increased with increasing copy number of chromosome 16. Further evidence that Rfp-Y might be located on chromosome 16 was obtained when individuals trisomic for chromosome 16 were found to transmit three Rfp-Y haplotypes. Finally, mapping of cosmid cluster III of the molecular map of chicken MHC genes (containing a MHC class II gene and two rRNA genes) to Rfp-Y validated the assignment of Rfp-Y to the MHC/NOR microchromosome. A genetic map can now be drawn for a portion of chicken chromosome 16 with Rfp-Y, encompassing two MHC class I and three MHC class II genes, separated from the B system by a region containing the NOR and exhibiting highly frequent recombination.