6 resultados para NITROGEN-CONTAINING CARBON

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in biologically based ecosystem models of the coupled terrestrial, hydrological, carbon, and nutrient cycles have provided new perspectives on the terrestrial biosphere’s behavior globally, over a range of time scales. We used the terrestrial ecosystem model Century to examine relationships between carbon, nitrogen, and water dynamics. The model, run to a quasi-steady-state, shows strong correlations between carbon, water, and nitrogen fluxes that lead to equilibration of water/energy and nitrogen limitation of net primary productivity. This occurs because as the water flux increases, the potentials for carbon uptake (photosynthesis), and inputs and losses of nitrogen, all increase. As the flux of carbon increases, the amount of nitrogen that can be captured into organic matter and then recycled also increases. Because most plant-available nitrogen is derived from internal recycling, this latter process is critical to sustaining high productivity in environments where water and energy are plentiful. At steady-state, water/energy and nitrogen limitation “equilibrate,” but because the water, carbon, and nitrogen cycles have different response times, inclusion of nitrogen cycling into ecosystem models adds behavior at longer time scales than in purely biophysical models. The tight correlations among nitrogen fluxes with evapotranspiration implies that either climate change or changes to nitrogen inputs (from fertilization or air pollution) will have large and long-lived effects on both productivity and nitrogen losses through hydrological and trace gas pathways. Comprehensive analyses of the role of ecosystems in the carbon cycle must consider mechanisms that arise from the interaction of the hydrological, carbon, and nutrient cycles in ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maize (Zea mays L.) plants were grown to the nine-leaf stage. Despite a saturating N supply, the youngest mature leaves (seventh position on the stem) contained little NO3− reserve. Droughted plants (deprived of nutrient solution) showed changes in foliar enzyme activities, mRNA accumulation, photosynthesis, and carbohydrate and amino acid contents. Total leaf water potential and CO2 assimilation rates, measured 3 h into the photoperiod, decreased 3 d after the onset of drought. Starch, glucose, fructose, and amino acids, but not sucrose (Suc), accumulated in the leaves of droughted plants. Maximal extractable phosphoenolpyruvate carboxylase activities increased slightly during water deficit, whereas the sensitivity of this enzyme to the inhibitor malate decreased. Maximal extractable Suc phosphate synthase activities decreased as a result of water stress, and there was an increase in the sensitivity to the inhibitor orthophosphate. A correlation between maximal extractable foliar nitrate reductase (NR) activity and the rate of CO2 assimilation was observed. The NR activation state and maximal extractable NR activity declined rapidly in response to drought. Photosynthesis and NR activity recovered rapidly when nutrient solution was restored at this point. The decrease in maximal extractable NR activity was accompanied by a decrease in NR transcripts, whereas Suc phosphate synthase and phosphoenolpyruvate carboxylase mRNAs were much less affected. The coordination of N and C metabolism is retained during drought conditions via modulation of the activities of Suc phosphate synthase and NR commensurate with the prevailing rate of photosynthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The target of rapamycin (Tor) proteins sense nutrients and control transcription and translation relevant to cell growth. Treating cells with the immunosuppressant rapamycin leads to the intracellular formation of an Fpr1p-rapamycin-Tor ternary complex that in turn leads to translational down-regulation. A more rapid effect is a rich transcriptional response resembling that when cells are shifted from high- to low-quality carbon or nitrogen sources. This transcriptional response is partly mediated by the nutrient-sensitive transcription factors GLN3 and NIL1 (also named GAT1). Here, we show that these GATA-type transcription factors control transcriptional responses that mediate translation by several means. Four observations highlight upstream roles of GATA-type transcription factors in translation. In their absence, processes caused by rapamycin or poor nutrients are diminished: translation repression, eIF4G protein loss, transcriptional down-regulation of proteins involved in translation, and RNA polymerase I/III activity repression. The Tor proteins preferentially use Gln3p or Nil1p to down-regulate translation in response to low-quality nitrogen or carbon, respectively. Functional consideration of the genes regulated by Gln3p or Nil1p reveals the logic of this differential regulation. Besides integrating control of transcription and translation, these transcription factors constitute branches downstream of the multichannel Tor proteins that can be selectively modulated in response to distinct (carbon- and nitrogen-based) nutrient signals from the environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

NADP+-isocitrate dehydrogenase (NADP+-IDH; EC 1.1.1.42) is involved in the supply of 2-oxoglutarate for ammonia assimilation and glutamate synthesis in higher plants through the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle. Only one NADP+-IDH form of cytosolic localization was detected in green cotyledons of pine (Pinus spp.) seedlings. The pine enzyme was purified and exhibited molecular and kinetic properties similar to those described for NADP+-IDH from angiosperm, with a higher catalytic efficiency (105 m−1 s−1) than the deduced efficiencies for GS and GOGAT in higher plants. A polyclonal antiserum was raised against pine NADP+-IDH and used to assess protein expression in the seedlings. Steady-state levels of NADP+-IDH were coordinated with GS during seed germination and were associated with GS/GOGAT enzymes during chloroplast biogenesis, suggesting that NADP+-IDH is involved in the provision of carbon skeletons for the synthesis of nitrogen-containing molecules. However, a noncoordinated pattern of NADP+-IDH and GS/GOGAT was observed in advanced stages of cotyledon development and in the hypocotyl. A detailed analysis in hypocotyl sections revealed that NADP+-IDH abundance was inversely correlated with the presence of GS, GOGAT, and ribulose-1,5-bisphosphate carboxylase/oxygenase but was associated with the differentiation of the organ. These results cannot be explained by the accepted role of the enzyme in nitrogen assimilation and strongly suggest that NADP+-IDH may have other, as-yet-unknown, biological functions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although the control of carbon fixation and nitrogen assimilation has been studied in detail, relatively little is known about the regulation of carbon and nitrogen flow into amino acids. In this paper we report our study of the metabolic regulation of expression of an Arabidopsis aspartate kinase/homoserine dehydrogenase (AK/HSD) gene, which encodes two linked key enzymes in the biosynthetic pathway of aspartate family amino acids. Northern blot analyses, as well as expression of chimeric AK/HSD-β-glucuronidase constructs, have shown that the expression of this gene is regulated by the photosynthesis-related metabolites sucrose and phosphate but not by nitrogenous compounds. In addition, analysis of AK/HSD promoter deletions suggested that a CTTGACTCTA sequence, resembling the binding site for the yeast GCN4 transcription factor, is likely to play a functional role in the expression of this gene. Nevertheless, longer promoter fragments, lacking the GCN4-like element, were still able to confer sugar inducibility, implying that the metabolic regulation of this gene is apparently obtained by multiple and redundant promoter sequences. The present and previous studies suggest that the conversion of aspartate into either the storage amino acid asparagine or aspartate family amino acids is subject to a coordinated, reciprocal metabolic control, and this biochemical branch point is a part of a larger, coordinated regulatory mechanism of nitrogen and carbon storage and utilization.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Photosynthesis, biological nitrogen fixation, and carbon dioxide assimilation are three fundamental biological processes catalyzed by photosynthetic bacteria. In the present study, it is shown that mutant strains of the nonsulfur purple photosynthetic bacteria Rhodospirillum rubrum and Rhodobacter sphaeroides, containing a blockage in the primary CO2 assimilatory pathway, derepress the synthesis of components of the nitrogen fixation enzyme complex and abrogate normal control mechanisms. The absence of the Calvin–Benson–Bassham (CBB) reductive pentose phosphate CO2 fixation pathway removes an important route for the dissipation of excess reducing power. Thus, the mutant strains develop alternative means to remove these reducing equivalents, resulting in the synthesis of large amounts of nitrogenase even in the presence of ammonia. This response is under the control of a global two-component signal transduction system previously found to regulate photosystem biosynthesis and the transcription of genes required for CO2 fixation through the CBB pathway and alternative routes. In addition, this two-component system directly controls the ability of these bacteria to grow under nitrogen-fixing conditions. These results indicate that there is a molecular link between the CBB and nitrogen fixation process, allowing the cell to overcome powerful control mechanisms to remove excess reducing power generated by photosynthesis and carbon metabolism. Furthermore, these results suggest that the two-component system integrates the expression of genes required for the three processes of photosynthesis, nitrogen fixation, and carbon dioxide fixation.