4 resultados para NGFI-B

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In Drosophila the response to the hormone ecdysone is mediated in part by Ultraspiracle (USP) and ecdysone receptor (EcR), which are members of the nuclear receptor superfamily. Heterodimers of these proteins bind to ecdysone response elements (EcREs) and ecdysone to modulate transcription. Herein we describe Drosophila hormone receptor 38 (DHR38) and Bombyx hormone receptor 38 (BHR38), two insect homologues of rat nerve growth factor-induced protein B (NGFI-B). Although members of the NGFI-B family are thought to function exclusively as monomers, we show that DHR38 and BHR38 in fact interact strongly with USP and that this interaction is evolutionarily conserved. DHR38 can compete in vitro against EcR for dimerization with USP and consequently disrupt EcR-USP binding to an EcRE. Moreover, transfection experiments in Schneider cells show that DHR38 can affect ecdysone-dependent transcription. This suggests that DHR38 plays a role in the ecdysone response and that more generally NGFI-B type receptors may be able to function as heterodimers with retinoid X receptor type receptors in regulating transcription.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The immediate early gene NUR77 (also called NGFI-B) is required for T cell antigen receptor-mediated cell death and is induced to very high levels in immature thymocytes and T cell hybridomas undergoing apoptosis. The Akt (PKB) kinase is a key player in transduction of anti-apoptotic and proliferative signals in T cells. Because Nur77 has a putative Akt phosphorylation site at Ser-350, and phosphorylation of this residue is critical for the transactivation activity of Nur77, we investigated whether Akt regulates Nur77. Coimmunoprecipitation experiments showed the detection of Nur77 in Akt immune complexes, suggesting that Nur77 and Akt physically interact. We further show that Akt specifically phosphorylates Ser-350 of the Nur77 protein within its DNA-binding domain in vitro and in vivo in 293 and NIH 3T3 cells. Because phosphorylation of Ser-350 of Nur77 is critical for its function as a transcription factor, we examined the effect of Akt on this function. By using luciferase assay experiments, we showed that phosphorylation of Nur77 by Akt decreased the transcriptional activity of Nur77 by 50–85%. Thus, we show that Akt interacts with Nur77 and inactivates Nur77 by phosphorylation at Ser-350 in a phosphatidylinositol 3-kinase-dependent manner, connecting the phosphatidylinositol 3-kinase-dependent Akt pathway and a nuclear receptor pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have designed a rapid cloning and screening strategy to identify new members of the nuclear hormone receptor superfamily that are expressed during the onset of Drosophila metamorphosis. Using this approach, we isolated three Drosophila genes, designated DHR38, DHR78, and DHR96. All three genes are expressed throughout third-instar larval and prepupal development. DHR38 is the Drosophila homolog of NGFI-B and binds specifically to an NGFI-B response element. DHR78 and DHR96 are orphan receptor genes. DHR78 is induced by 20-hydroxyecdysone (20E) in cultured larval organs, and its encoded protein binds to two AGGTCA half-sites arranged as either direct or palindromic repeats. DHR96 is also 20E-inducible, and its encoded protein binds selectively to the hsp27 20E response element. The 20E receptor can bind to each of the sequences recognized by DHR78 and DHR96, indicating that these proteins may compete with the receptor for binding to a common set of target sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NGFI-A (also called Egr1, Zif268, or Krox24) and the closely related proteins Krox20, NGFI-C, and Egr3 are zinc-finger transcription factors encoded by immediate-early genes which are induced by a wide variety of extracellular stimuli. NGFI-A has been implicated in cell proliferation, macrophage differentiation, synaptic activation, and long-term potentiation, whereas Krox20 is critical for proper hindbrain segmentation and peripheral nerve myelination. In previous work, a structure/function analysis of NGFI-A revealed a 34-aa inhibitory domain that was hypothesized to be the target of a cellular factor that represses NGFI-A transcriptional activity. Using the yeast two-hybrid system, we have isolated a cDNA clone which encodes a protein that interacts with this inhibitory domain and inhibits the ability of NGFI-A to activate transcription. This NGFI-A-binding protein, NAB1, is a 570-aa nuclear protein that bears no obvious sequence homology to known proteins. NAB1 also represses Krox20 activity, but it does not influence Egr3 or NGFI-G, thus providing a mechanism for the differential regulation of this family of immediate-early transcription factors.