25 resultados para NGF

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cholinergic neurons respond to the administration of nerve growth factor (NGF) in vivo with a prominent and selective increase of choline acetyl transferase activity. This suggests the possible involvement of endogenous NGF, acting through its receptor TrkA, in the maintenance of central nervous system cholinergic synapses in the adult rat brain. To test this hypothesis, a small peptide, C(92-96), that blocks NGF-TrkA interactions was delivered stereotactically into the rat cortex over a 2-week period, and its effect and potency were compared with those of an anti-NGF monoclonal antibody (mAb NGF30). Two presynaptic antigenic sites were studied by immunoreactivity, and the number of presynaptic sites was counted by using an image analysis system. Synaptophysin was used as a marker for overall cortical synapses, and the vesicular acetylcholine transporter was used as a marker for cortical cholinergic presynaptic sites. No significant variations in the number of synaptophysin-immunoreactive sites were observed. However, both mAb NGF30 and the TrkA antagonist C(92-96) provoked a significant decrease in the number and size of vesicular acetylcholine transporter–IR sites, with the losses being more marked in the C(92-96) treated rats. These observations support the notion that endogenously produced NGF acting through TrkA receptors is involved in the maintenance of the cholinergic phenotype in the normal, adult rat brain and supports the idea that NGF normally plays a role in the continual remodeling of neural circuits during adulthood. The development of neurotrophin mimetics with antagonistic and eventually agonist action may contribute to therapeutic strategies for central nervous system degeneration and trauma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Differentiation and function of pancreatic β cells are regulated by a variety of hormones and growth factors, including nerve growth factor (NGF). Whether this is an endocrine or autocrine/paracrine role for NGF is not known. We demonstrate that NGF is produced and secreted by adult rat pancreatic β cells. NGF secretion is increased in response to elevated glucose or potassium, but decreased in response to dibutyryl cAMP. Moreover, steady-state levels of NGF mRNA are down-regulated by dibutyryl cAMP, which is opposite to the effect of cAMP on insulin release. NGF-stimulated changes in morphology and function are mediated by high-affinity Trk A receptors in other mammalian cells. Trk A receptors are present in β cells and steady-state levels of Trk A mRNA are modulated by NGF and dibutyryl cAMP. Taken together, these findings suggest endocrine and autocrine roles for pancreatic β-cell NGF, which, in turn, could be related to the pathogenesis of diabetes mellitus where serum NGF levels are diminished.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The topology of signal transduction is particularly important for neurons. Neurotrophic factors such as nerve growth factor (NGF) interact with receptors at distal axons and a signal is transduced by retrograde transport to the cell body to ensure survival of the neuron. We have discovered an organelle that may account for the retrograde transport of the neurotrophin signal. This organelle is derived from endocytosis of the receptor tyrosine kinase for NGF, TrkA. In vitro reactions containing semi-intact PC12 cells and ATP were used to enhance recovery of a novel organelle: small vesicles containing internalized NGF bound to activated TrkA. These vesicles were distinct from clathrin coated vesicles, uncoated primary endocytic vesicles, and synaptic vesicles, and resembled transport vesicles in their sedimentation velocity. They contained 10% of the total bound NGF and almost one-third of the total tyrosine phosphorylated TrkA. These small vesicles are compelling candidates for the organelles through which the neurotrophin signal is conveyed down the axon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nerve growth factor (NGF) is a neurotrophin with the ability to exert specific effects on cells of the immune system. Human monocytes/macrophages (M/M) infected in vitro with HIV type 1 (HIV-1) are able to produce substantial levels of NGF that are associated with enhanced expression of the high-affinity NGF receptor (p140 trkA) on the M/M surface. Treatment of HIV-infected human M/M with anti-NGF Ab blocking the biological activity of NGF leads to a marked decrease of the expression of p140 trkA high-affinity receptor, a concomitant increased expression of p75NTR low-affinity receptor for NGF, and the occurrence of apoptotic death of M/M. Taken together, these findings suggest a role for NGF as an autocrine survival factor that rescues human M/M from the cytopathic effect caused by HIV infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tyrosine phosphorylation has been shown to be an important modulator of synaptic transmission in both vertebrates and invertebrates. Such findings hint toward the existence of extracellular ligands capable of activating this widely represented signaling mechanism at or close to the synapse. Examples of such ligands are the peptide growth factors which, on binding, activate receptor tyrosine kinases. To gain insight into the physiological consequences of receptor tyrosine kinase activation in squid giant synapse, a series of growth factors was tested in this preparation. Electrophysiological, pharmacological, and biochemical analysis demonstrated that nerve growth factor (NGF) triggers an acute and specific reduction of the postsynaptic potential amplitude, without affecting the presynaptic spike generation or presynaptic calcium current. The NGF target is localized at a postsynaptic site and involves a new TrkA-like receptor. The squid receptor crossreacts with antibodies generated against mammalian TrkA, is tyrosine phosphorylated in response to NGF stimulation, and is blocked by specific pharmacological inhibitors. The modulation described emphasizes the important role of growth factors on invertebrate synaptic transmission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nerve growth factor (NGF) prevents apoptosis through stimulation of the TrkA receptor protein tyrosine kinase. The downstream activation of phosphatidylinositol 3-kinase (PI 3-kinase) is essential for the inhibition of apoptosis, although this enzyme does not bind to and is not directly activated by TrkA. We have found that the addition of NGF to PC-12 cells resulted in the phosphorylation of the Grb2-associated binder-1 (Gab1) docking protein and induced the association of several SH2 domain-containing proteins, including PI 3-kinase. A substantial fraction of the total cellular PI 3-kinase activity was associated with Gab1. PC-12 cells that overexpressed Gab1 show a decreased requirement for the amount of NGF necessary to inhibit apoptosis. The expression of a Gab1 mutant that lacked the binding sites for PI 3-kinase enhanced apoptosis and diminished the protective effect of NGF. Hence, Gab1 has a major role in connecting TrkA with PI 3-kinase activation and for the promotion of cell survival by NGF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neurotrophins nerve growth factor (NGF) and neurotrophin-3 (NT3) support the survival of subpopulations of primary sensory neurons with defined and distinct physiological characteristics. Only a few genes have been identified as being differentially expressed in these subpopulations, and not much is known about the nature of the molecules involved in the processing of sensory information in NGF-dependent nociceptive neurons or NT3-dependent proprioceptive neurons. We devised a simple dorsal root ganglion (DRG) explant culture system, allowing the selection of neuronal populations preferentially responsive to NGF or NT3. The reliability of this assay was first monitored by the differential expression of the NGF and NT3 receptors trkA and trkC, as well as that of neuropeptides and calcium-binding proteins. We then identified four differentially expressed sodium channels, two enriched in the NGF population and two others in the NT3 population. Finally, using an optimized RNA fingerprinting protocol, we identified 20 additional genes, all differentially expressed in DRG explants cultured with NGF or NT3. This approach thus allows the identification of large number of genes expressed in subpopulations of primary sensory neurons and opens the possibility of studying the molecular mechanisms of nociception and proprioception.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we demonstrate that cholecystokinin-8 (CCK-8) induces an increase in both nerve growth factor (NGF) protein and NGF mRNA in mouse cortex and hippocampus when i.p. injected at physiological doses. By using fimbria–fornix-lesioned mice, we have also demonstrated that repeated CCK-8 i.p. injections result in recovery of lesion-induced NGF deficit in septum and restore the baseline NGF levels in hippocampus and cortex. Parallel to the effects on NGF, CCK-8 increases choline acetyltransferase (Chat) activity in forebrain when injected in unlesioned mice and counteract the septo-hippocampal Chat alterations in fimbria–fornix-lesioned mice. To assess the NGF involvement in the mechanism by which CCK-8 induces brain Chat, NGF antibody was administrated intracerebrally to saline- and CCK-8-injected mice. We observe that pretreatment with NGF antibody causes a marked reduction of NGF and Chat activity in septum and hippocampus of both saline- and CCK-8-injected mice. This evidence indicates that the CCK-8 effects on cholinergic cells are mediated through the synthesis and release of NGF. Taken together, our results suggest that peripheral administration of CCK-8 may represent a potential experimental model for investigating the effects of endogenous NGF up-regulation on diseases associated with altered brain cholinergic functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurotrophic factors such as nerve growth factor (NGF) promote a wide variety of responses in neurons, including differentiation, survival, plasticity, and repair. Such actions often require changes in gene expression. To identify the regulated genes and thereby to more fully understand the NGF mechanism, we carried out serial analysis of gene expression (SAGE) profiling of transcripts derived from rat PC12 cells before and after NGF-promoted neuronal differentiation. Multiple criteria supported the reliability of the profile. Approximately 157,000 SAGE tags were analyzed, representing at least 21,000 unique transcripts. Of these, nearly 800 were regulated by 6-fold or more in response to NGF. Approximately 150 of the regulated transcripts have been matched to named genes, the majority of which were not previously known to be NGF-responsive. Functional categorization of the regulated genes provides insight into the complex, integrated mechanism by which NGF promotes its multiple actions. It is anticipated that as genomic sequence information accrues the data derived here will continue to provide information about neurotrophic factor mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatial learning requires the septohippocampal pathway. The interaction of learning experience with gene products to modulate the function of a pathway may underlie use-dependent plasticity. The regulated release of nerve growth factor (NGF) from hippocampal cultures and hippocampus, as well as its actions on cholinergic septal neurons, suggest it as a candidate protein to interact with a learning experience. A method was used to evaluate NGF gene-experience interaction on the septohippocampal neural circuitry in mice. The method permits brain region-specific expression of a new gene by using a two-component approach: a virus vector directing expression of cre recombinase; and transgenic mice carrying genomic recombination substrates rendered transcriptionally inactive by a “floxed” stop cassette. Cre recombinase vector delivery into transgenic mouse hippocampus resulted in recombination in 30% of infected cells and the expression of a new gene in those cells. To examine the interaction of the NGF gene and experience, adult mice carrying a NGF transgene with a floxed stop cassette (NGFXAT) received a cre recombinase vector to produce localized unilateral hippocampal NGF gene expression, so-called “activated” mice. Activated and control nonactivated NGFXAT mice were subjected to different experiences: repeated spatial learning, repeated rote performance, or standard vivarium housing. Latency, the time to complete the learning task, declined in the repeated spatial learning groups. The measurement of interaction between NGF gene expression and experience on the septohippocampal circuitry was assessed by counting retrogradely labeled basal forebrain cholinergic neurons projecting to the hippocampal site of NGF gene activation. Comparison of all NGF activated groups revealed a graded effect of experience on the septohippocampal pathway, with the largest change occurring in activated mice provided with repeated learning experience. These data demonstrate that plasticity of the adult spatial learning circuitry can be robustly modulated by experience-dependent interactions with a specific hippocampal gene product.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stimulation of β-adrenergic receptors (BAR) by clenbuterol (CLE) increases nerve growth factor (NGF) biosynthesis in the rat cerebral cortex but not in other regions of the brain. We have explored the transcription mechanisms that may account for the cortex-specific activation of the NGF gene. Although the NGF promoter contains an AP-1 element, AP-1-binding activity in the cerebral cortex was not induced by CLE, suggesting that other transcription factors govern the brain area-specific induction of NGF. Because BAR activation increases cAMP levels, we examined the role of CCAAT/enhancer-binding proteins (C/EBP), some of which are known to be cAMP-inducible. In C6–2B glioma cells, whose NGF expression is induced by BAR agonists, (i) CLE increased C/EBPδ-binding activity, (ii) NGF mRNA levels were increased by overexpressing C/EBPδ, and (iii) C/EBPδ increased the activity of an NGF promoter–reporter construct. Moreover, DNase footprinting and deletion analyses identified a C/EBPδ site in the proximal region of the NGF promoter. C/EBPδ appears to be responsible for the BAR-mediated activation of the NGF gene in vivo, since CLE elicited a time-dependent increase in C/EBPδ-binding activity in the cerebral cortex only. Our data suggest that, while AP-1 may regulate basal levels of NGF expression, C/EBPδ is a critical component determining the area-specific expression of NGF in response to BAR stimulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In adult forebrain, nerve growth factor (NGF) influences neuronal maintenance and axon sprouting and is neuroprotective in several injury models through mechanisms that are incompletely understood. Most NGF signaling is thought to occur after internalization and retrograde transport of trkA receptor and be mediated through the nucleus. However, NGF expression in hippocampus is rapidly and sensitively regulated by synaptic activity, suggesting that NGF exerts local effects more dynamically than possible through signaling requiring retrograde transport to distant afferent neurons. Interactions have been reported between NGF and nitric oxide (NO). Because NO affects both neural plasticity and degeneration, and trk receptors can mediate signaling within minutes, we hypothesized that NGF might rapidly modulate NO production. Using in vivo microdialysis we measured conversion of l-[14C]arginine to l-[14C]citrulline as an accurate reflection of NO synthase (NOS) activity in adult rat hippocampus. NGF significantly reduced NOS activity to 61% of basal levels within 20 min of onset of delivery and maintained NOS activity at less than 50% of baseline throughout 3 hr of delivery. This effect did not occur with control protein (cytochrome c) and was not mediated by an effect of NGF on glutamate levels. In addition, simultaneous delivery of NGF prevented significant increases in NOS activity triggered by the glutamate receptor agonists N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Rapid suppression by NGF of basal and glutamate-stimulated NOS activity may regulate neuromodulatory functions of NO or protect neurons from NO toxicity and suggests a novel mechanism for rapidly mediating functions of NGF and other neurotrophins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NGF initiates the majority of its neurotrophic effects by promoting the activation of the tyrosine kinase receptor TrkA. Here we describe a novel interaction between TrkA and GIPC, a PDZ domain protein. GIPC binds to the juxtamembrane region of TrkA through its PDZ domain. The PDZ domain of GIPC also interacts with GAIP, an RGS (regulators of G protein signaling) protein. GIPC and GAIP are components of a G protein-coupled signaling complex thought to be involved in vesicular trafficking. In transfected HEK 293T cells GIPC, GAIP, and TrkA form a coprecipitable protein complex. Both TrkA and GAIP bind to the PDZ domain of GIPC, but their binding sites within the PDZ domain are different. The association of endogenous GIPC with the TrkA receptor was confirmed by coimmunoprecipitation in PC12 (615) cells stably expressing TrkA. By immunofluorescence GIPC colocalizes with phosphorylated TrkA receptors in retrograde transport vesicles located in the neurites and cell bodies of differentiated PC12 (615) cells. These results suggest that GIPC, like other PDZ domain proteins, serves to cluster transmembrane receptors with signaling molecules. When GIPC is overexpressed in PC12 (615) cells, NGF-induced phosphorylation of mitogen-activated protein (MAP) kinase (Erk1/2) decreases; however, there is no effect on phosphorylation of Akt, phospholipase C-γ1, or Shc. The association of TrkA receptors with GIPC and GAIP plus the inhibition of MAP kinase by GIPC suggests that GIPC may provide a link between TrkA and G protein signaling pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In postnatal tissues, angiogenesis occurs in nontumoral conditions on appropriate stimuli. In the nervous tissue, hypoxia, neural graft, increased neural function, and synaptic activity are associated with neoangiogenesis. We have investigated the occurrence of neoangiogenesis in the superior cervical ganglia (scg) of newborn rats treated for 8–21 days with 6-hydroxy-dopamine (6-OHDA), nerve growth factor (NGF), or 6-OHDA + NGF. The two latter treatments induced a significant increase in scg size. However, the increase after combined treatment far exceeded that of NGF alone. Similarly, histological and histochemical analysis revealed neuronal hypertrophy and endothelial cell hyperplasia associated with stromal hypertrophy (as described by laminin immunostaining) and increased vascular bed (as revealed by platelet/endothelial cell adhesion molecule-1 immunostaining) in 6-OHDA + NGF-treated pups. NGF, either alone or associated with 6-OHDA, also induced a significant up-regulation of NADPH diaphorase, neuronal nitric oxide synthase, and vascular endothelial growth factor expression in scg neurons. The present investigation suggests that the increase of scg size induced by NGF and 6-OHDA + NGF is associated with neoangiogenesis, and that the induction of vasoactive and angiogenic factors in neurons represents a further and previously undisclosed effect of NGF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nerve growth factor (NGF) is a polypeptide which, in addition to its effect on nerve cells, is believed to play a role in inflammatory responses and in tissue repair. Because fibroblasts represent the main target and effector cells in these processes, to investigate whether NGF is involved in lung and skin tissue repair, we studied the effect of NGF on fibroblast migration, proliferation, collagen metabolism, modulation into myofibroblasts, and contraction of collagen gel. Both skin and lung fibroblasts were found to produce NGF and to express tyrosine kinase receptor (trkA) under basal conditions, whereas the low-affinity p75 receptor was expressed only after prolonged NGF exposure. NGF significantly induced skin and lung fibroblast migration in an in vitro model of wounded fibroblast and skin migration in Boyden chambers. Nevertheless NGF did not influence either skin or lung fibroblast proliferation, collagen production, or metalloproteinase production or activation. In contrast, culture of both lung and skin fibroblasts with NGF modulated their phenotype into myofibroblasts. Moreover, addition of NGF to both fibroblast types embedded in collagen gel increased their contraction. Fibrotic human lung or skin tissues displayed immunoreactivity for NGF, trkA, and p75. These data show a direct pro-fibrogenic effect of NGF on skin and lung fibroblasts and therefore indicate a role for NGF in tissue repair and fibrosis.