2 resultados para NGC 300
em National Center for Biotechnology Information - NCBI
Resumo:
Exonic splicing enhancer (ESE) sequences are important for the recognition of splice sites in pre-mRNA. These sequences are bound by specific serine-arginine (SR) repeat proteins that promote the assembly of splicing complexes at adjacent splice sites. We have recently identified a splicing “coactivator,” SRm160/300, which contains SRm160 (the SR nuclear matrix protein of 160 kDa) and a 300-kDa nuclear matrix antigen. In the present study, we show that SRm160/300 is required for a purine-rich ESE to promote the splicing of a pre-mRNA derived from the Drosophila doublesex gene. The association of SRm160/300 and U2 small nuclear ribonucleoprotein particle (snRNP) with this pre-mRNA requires both U1 snRNP and factors bound to the ESE. Independently of pre-mRNA, SRm160/300 specifically interacts with U2 snRNP and with a human homolog of the Drosophila alternative splicing regulator Transformer 2, which binds to purine-rich ESEs. The results suggest a model for ESE function in which the SRm160/300 splicing coactivator promotes critical interactions between ESE-bound “activators” and the snRNP machinery of the spliceosome.
Resumo:
Investigations of the fine-scale structure in the compact nucleus of the radio source 3C 84 in NGC 1275 (New General Catalogue number) are reported. Structural monitoring observations beginning as early as 1976, and continuing to the present, revealed subluminal motions in a jet-like relatively diffuse region extending away from a flat-spectrum core. A counterjet feature was discovered in 1993, and very recent nearly simultaneous studies have detected the same feature at five frequencies ranging from 5 to 43 GHz. The counterjet exhibits a strong low-frequency cutoff, giving this region of the source an inverted spectrum. The observations are consistent with a physical model in which the cutoff arises from free-free absorption in a volume that surrounds the core but obscures only the counterjet feature. If such a model is confirmed, very-long-baseline radio interferometry observations can then be used to probe the accretion region, outside the radio jet, on parsec scales.