19 resultados para NEW-WORLD MONKEYS
em National Center for Biotechnology Information - NCBI
Resumo:
It is known that the squirrel monkey, marmoset, and other related New World (NW) monkeys possess three high-frequency alleles at the single X-linked photopigment locus, and that the spectral sensitivity peaks of these alleles are within those delimited by the human red and green pigment genes. The three alleles in the squirrel monkey and marmoset have been sequenced previously. In this study, the three alleles were found and sequenced in the saki monkey, capuchin, and tamarin. Although the capuchin and tamarin belong to the same family as the squirrel monkey and marmoset, the saki monkey belongs to a different family and is one of the species that is most divergent from the squirrel monkey and marmoset, suggesting the presence of the triallelic system in many NW monkeys. The nucleotide sequences of these alleles from the five species studied indicate that gene conversion occurs frequently and has partially or completely homogenized intronic and exonic regions of the alleles in each species, making it appear that a triallelic system arose independently in each of the five species studied. Nevertheless, a detailed analysis suggests that the triallelic system arose only once in the NW monkey lineage, from a middle wavelength (green) opsin gene, and that the amino acid differences at functionally critical sites among alleles have been maintained by natural selection in NW monkeys for >20 million years. Moreover, the two X-linked opsin genes of howler monkeys (a NW monkey genus) were evidently derived from the incorporation of a middle (green) and a long wavelength (red) allele into one chromosome; these two genes together with the (autosomal) blue opsin gene would immediately enable even a male monkey to have trichromatic vision.
Resumo:
Nucleotide sequences were determined for the gamma1- and gamma2-globin loci from representatives of the seven anciently separated clades in the three extant platyrrhine families (Atelidae, Pitheciidae, and Cebidae). These sequences revealed an evolutionary trend in New World monkeys either to inactivate the gamma1 gene or to fuse it with the gamma2 gene, i.e. to have only one functional fetally expressed gamma gene. This trend is clearly evident in six of the seven clades: (i) it occurred in atelids by deletion of most of the gamma1 gene in the basal ancestor of this clade; (ii-iv) in pitheciid titi, saki, and cebid capuchin monkeys by potentially debilitating nucleotide substitutions in the proximal CCAAT box of the gamma1 promoters and (v and vi) in cebid owl and squirrel monkeys by crossovers that fused 5' sequence from gamma1 with 3' sequence from gamma2. In the five clades with gamma1 and gamma2 loci separated by intergenic sequences (the fifth clade being the cebid marmosets), the gamma2 genes retained an unaltered proximal CCAAT motif and their gamma2 promoters accumulated fewer nucleotide substitutions than did the gamma1 promoters. Thus, phylogenetic considerations indicate that the stem platyrrhines, ancestral to all New World monkeys, had gamma2 as the primary fetally expressed gamma gene. A further inference is that when the earlier stem anthropoid gamma gene duplicated, gamma2 (at its greater downstream distance from epsilon) could evade embryonic activation by the locus control region but could be fetally activated once released by regulatory mutations from fetal repressors.
Resumo:
Conclusive evidence was provided that gamma 1, the upstream of the two linked simian gamma-globin loci (5'-gamma 1-gamma 2-3'), is a pseudogene in a major group of New World monkeys. Sequence analysis of PCR-amplified genomic fragments of predicted sizes revealed that all extant genera of the platyrrhine family Atelidae [Lagothrix (woolly monkeys), Brachyteles (woolly spider monkeys), Ateles (spider monkeys), and Alouatta (howler monkeys)] share a large deletion that removed most of exon 2, all of intron 2 and exon 3, and much of the 3' flanking sequence of gamma 1. The fact that two functional gamma-globin genes were not present in early ancestors of the Atelidae (and that gamma 1 was the dispensible gene) suggests that for much or even all of their evolution, platyrrhines have had gamma 2 as the primary fetally expressed gamma-globin gene, in contrast to catarrhines (e.g., humans and chimpanzees) that have gamma 1 as the primary fetally expressed gamma-globin gene. Results from promoter sequences further suggest that all three platyrrhine families (Atelidae, Cebidae, and Pitheciidae) have gamma 2 rather than gamma 1 as their primary fetally expressed gamma-globin gene. The implications of this suggestion were explored in terms of how gene redundancy, regulatory mutations, and distance of each gamma-globin gene from the locus control region were possibly involved in the acquisition and maintenance of fetal, rather than embryonic, expression.
Resumo:
The prevalence of woody species in oceanic islands has attracted the attention of evolutionary biologists for more than a century. We used a phylogeny based on sequences of the internal-transcribed spacer region of nuclear ribosomal DNA to trace the evolution of woodiness in Pericallis (Asteraceae: Senecioneae), a genus endemic to the Macaronesian archipelagos of the Azores, Madeira, and Canaries. Our results show that woodiness in Pericallis originated independently at least twice in these islands, further weakening some previous hypotheses concerning the value of this character for tracing the continental ancestry of island endemics. The same data suggest that the origin of woodiness is correlated with ecological shifts from open to species-rich habitats and that the ancestor of Pericallis was an herbaceous species adapted to marginal habitats of the laurel forest. Our results also support Pericallis as closely related to New World genera of the tribe Senecioneae.
Resumo:
Homologues of the human major histocompatibility complex (MHC) HLA-A, -B, -E, -F, and -G loci are present in all the Catarrhini (Old World primates, apes, and humans), and some of their allelic lineages have survived several speciation events. Analysis of 26 MHC class I cDNAs from seven different genera of New World primates revealed that the Callitrichinae (tamarins and marmosets) are an exception to these rules of MHC stability. In gene trees of primate MHC class I genes, sequences from the Callitrichinae cluster in a genus-specific fashion, whereas in the other genera of New World primates, as in the Catarrhini, they cluster in a transgeneric way. The genus-specific clustering of the Callitrichinae cDNAs indicates that there is no orthology between MHC class I loci in genera of this phyletic group. Additionally, the Callitrichinae genera exhibit limited variability of their MHC class I genes, in contrast to the high variability displayed by all other primates. Each Callitrichinae genus, therefore, expresses its own set of MHC class I genes, suggesting that an unusually high rate of turnover of loci occurs in this subfamily. The limited variability of MHC class I genes in the Callitrichinae is likely the result of the recent origin of these loci.
Resumo:
Recently, Y chromosome markers have begun to be used to study Native American origins. Available data have been interpreted as indicating that the colonizers of the New World carried a single founder haplotype. However, these early studies have been based on a few, mostly complex polymorphisms of insufficient resolution to determine whether observed diversity stems from admixture or diversity among the colonizers. Because the interpretation of Y chromosomal variation in the New World depends on founding diversity, it is important to develop marker systems with finer resolution. Here we evaluate the hypothesis of a single-founder Y haplotype for Amerinds by using 11 Y-specific markers in five Colombian Amerind populations. Two of these markers (DYS271, DYS287) are reliable indicators of admixture and detected three non-Amerind chromosomes in our sample. Two other markers (DYS199, M19) are single-nucleotide polymorphisms mostly restricted to Native Americans. The relatedness of chromosomes defined by these two markers was evaluated by constructing haplotypes with seven microsatellite loci (DYS388 to 394). The microsatellite backgrounds found on the two haplogroups defined by marker DYS199 demonstrate the existence of at least two Amerind founder haplotypes, one of them (carrying allele DYS199 T) largely restricted to Native Americans. The estimated age and distribution of these haplogroups places them among the founders of the New World.
Resumo:
Long-distance population dispersal leaves its characteristic signature in genomes, namely, reduced diversity and increased linkage between genetic markers. This signature enables historical patterns of range expansion to be traced. Herein, we use microsatellite loci from the human pathogen Coccidioides immitis to show that genetic diversity in this fungus is geographically partitioned throughout North America. In contrast, analyses of South American C. immitis show that this population is genetically depauperate and was founded from a single North American population centered in Texas. Variances of allele distributions show that South American C. immitis have undergone rapid population growth, consistent with an epidemic increase in postcolonization population size. Herein, we estimate the introduction into South America to have occurred within the last 9,000–140,000 years. This range increase parallels that of Homo sapiens. Because of known associations between Amerindians and this fungus, we suggest that the colonization of South America by C. immitis represents a relatively recent and rapid codispersal of a host and its pathogen.
Resumo:
A nearly complete skeleton of a robust-bodied New World monkey that resembles living spider monkeys was recovered from undisturbed Pleistocene deposits in the Brazilian state of Bahia. The skeleton displays the highly specialized postcranial pattern typical of spider and woolly spider monkeys and shares cranial similarities to the spider monkey exclusively. It is generically distinct on the basis of its robustness (>20 kg) and on the shape of its braincase. This new genus indicates that New World monkeys nearly twice the size of those living today were part of the mammalian biomass of southern Amazonia in the late Pleistocene. The discovery of this specimen expands the known adaptive diversity of New World monkeys and demonstrates that they underwent body size expansion in the terminal Pleistocene, as did many other types of mammals.
Resumo:
The European discovery and settlement of the Americas revealed unforeseen dimensions and gave rise to unpremeditated ways of coping with the resulting problems. This paper traces out the enduring social and cultural implications of this foundational encounter.
Resumo:
The nuclear and mitochondrial genomes coevolve to optimize approximately 100 different interactions necessary for an efficient ATP-generating system. This coevolution led to a species-specific compatibility between these genomes. We introduced mitochondrial DNA (mtDNA) from different primates into mtDNA-less human cells and selected for growth of cells with a functional oxidative phosphorylation system. mtDNA from common chimpanzee, pigmy chimpanzee, and gorilla were able to restore oxidative phosphorylation in the context of a human nuclear background, whereas mtDNA from orangutan, and species representative of Old-World monkeys, New-World monkeys, and lemurs were not. Oxygen consumption, a sensitive index of respiratory function, showed that mtDNA from chimpanzee, pigmy chimpanzee, and gorilla replaced the human mtDNA and restored respiration to essentially normal levels. Mitochondrial protein synthesis was also unaltered in successful “xenomitochondrial cybrids.” The abrupt failure of mtDNA from primate species that diverged from humans as recently as 8–18 million years ago to functionally replace human mtDNA suggests the presence of one or a few mutations affecting critical nuclear–mitochondrial genome interactions between these species. These cellular systems provide a demonstration of intergenus mtDNA transfer, expand more than 20-fold the number of mtDNA polymorphisms that can be analyzed in a human nuclear background, and provide a novel model for the study of nuclear–mitochondrial interactions.
Resumo:
The past 15 years have brought much progress in our understanding of several basic features of primate color vision. There has been particular success in cataloging the spectral properties of the cone photopigments found in retinas of a number of primate species and in elucidating the relationship between cone opsin genes and their photopigment products. Direct studies of color vision show that there are several modal patterns of color vision among groupings of primates: (i) Old World monkeys, apes, and humans all enjoy trichromatic color vision, although the former two groups do not seem prone to the polymorphic variations in color vision that are characteristic of people; (ii) most species of New World monkeys are highly polymorphic, with individual animals having any of several types of dichromatic or trichromatic color vision; (iii) less is known about color vision in prosimians, but evidence suggests that at least some diurnal species have dichromatic color vision; and (iv) some nocturnal primates may lack color vision completely. In many cases the photopigments and photopigment gene arrangements underlying these patterns have been revealed and, as a result, hints are emerging about the evolution of color vision among the primates.
Resumo:
The ZNF91 gene family, a subset of the Krüppel-associated box (KRAB)-containing group of zinc finger genes, comprises more than 40 loci; most reside on human chromosome 19p12-p13.1. We have examined the emergence and evolutionary conservation of the ZNF91 family. ZNF91 family members were detected in all species of great apes, gibbons, Old World monkeys, and New World monkeys examined but were not found in prosimians or rodents. In each species containing the ZNF91 family, the genes were clustered at one major site, on the chromosome(s) syntenic to human chromosome 19. To identify a putative "founder" gene, > 20 murine KRAB-containing zinc finger protein (ZFP) cDNAs were randomly cloned, but none showed sequence similarity to the ZNF91 genes. These observations suggest that the ZNF91 gene cluster is a derived character specific to Anthropoidea, resulting from a duplication and amplification event some 55 million years ago in the common ancestor of simians. Although the ZNF91 gene cluster is present in all simian species, the sequences of the human ZNF91 gene that confer DNA-binding specificity were conserved only in great apes, suggesting that there is not a high selective pressure to maintain the DNA targets of these proteins during evolution.
Resumo:
Recent discovery of crania, dentitions, and postcrania of a primitive anthropoidean primate, Proteopithecus sylviae, at the late Eocene L-4l quarry in the Fayum, Egypt, provides evidence of a new taxonomic family of early African higher primates, the Proteopithecidae. This family could be part of the basal radiation that produced the New World platyrrhine primates, or it could be unrelated to any subsequent lineages. Although no larger than a small callitrichid or a dwarf lemur, this tiny primate already possessed many of the derived features of later anthropoids and was a diurnal and probably dimorphic species. In dental formula and other dental proportions, as well as in known postcranial features, Proteopithecus more nearly resembles platyrrhines than does any other Old World higher primate. The small size of the Proteopithecus cranium demonstrates that the defining cranial characteristics of Anthropoidea did not arise as a consequence of an increase in size during derivation from earlier prosimians.
Resumo:
Chromosome painting in placental mammalians illustrates that genome evolution is marked by chromosomal synteny conservation and that the association of chromosomes 3 and 21 may be the largest widely conserved syntenic block known for mammals. We studied intrachromosomal rearrangements of the syntenic block 3/21 by using probes derived from chromosomal subregions with a resolution of up to 10–15 Mbp. We demonstrate that the rearrangements visualized by chromosome painting, mostly translocations, are only a fraction of the actual chromosomal changes that have occurred during evolution. The ancestral segment order for both primates and carnivores is still found in some species in both orders. From the ancestral primate/carnivore condition an inversion is needed to derive the pig homolog, and a fission of chromosome 21 and a pericentric inversion is needed to derive the Bornean orangutan condition. Two overlapping inversions in the chromosome 3 homolog then would lead to the chromosome form found in humans and African apes. This reconstruction of the origin of human chromosome 3 contrasts with the generally accepted scenario derived from chromosome banding in which it was proposed that only one pericentric inversion was needed. From the ancestral form for Old World primates (now found in the Bornean orangutan) a pericentric inversion and centromere shift leads to the chromosome ancestral for all Old World monkeys. Intrachromosomal rearrangements, as shown here, make up a set of potentially plentiful and informative markers that can be used for phylogenetic reconstruction and a more refined comparative mapping of the genome.
Resumo:
Integration of viral DNA into the host nuclear genome, although not unusual in bacterial and animal systems, has surprisingly not been reported for plants. We have discovered geminvirus-related DNA (GRD) sequences, in the form of distinct sets of multiple direct repeats comprising three related repeat classes, situated in a unique locus in the Nicotiana tabacum (tobacco) nuclear genome. The organization of these sequences is similar or identical in eight different tobacco cultivars we have examined. DNA sequence analysis reveals that each repeat has sequences most resembling those of the New World geminiviral DNA replication origin plus the adjacent AL1 gene, encoding the viral replication protein. We believe these GRD sequences originated quite recently in Nicotiana evolution through integration of geminiviral DNA by some combination of the processes of illegitimate recombination, amplification, deletions, and rearrangements. These events must have occurred in plant tissue that was subsequently able to contribute to meristematic tissue yielding gametes. GRD may have been retained in tobacco by selection or by random fixation in a small evolving population. Although we cannot detect transcription of these sequences, this does not exclude the possibility that they may originally have been expressed.