9 resultados para N-Dimensional Co-occurrence Matrix
em National Center for Biotechnology Information - NCBI
Resumo:
Tham Khuyen Cave (Lang Son Province, northern Vietnam) is one of the more significant sites to yield fossil vertebrates in east Asia. During the mid-1960s, excavation in a suite of deposits produced important hominoid dental remains of middle Pleistocene age. We undertake more rigorous analyses of these sediments to understand the fluvial dynamics of Pleistocene cave infilling as they determine how skeletal elements accumulate within Tham Khuyen and other east Asian sites. Uranium/thorium series analysis of speleothems brackets the Pleistocene chronology for breaching, infilling, and exhuming the regional paleokarst. Clast analysis indicates sedimentary constituents, including hominoid teeth and cranial fragments accumulated from very short distances and under low fluvial energy. Electron spin resonance analysis of vertebrate tooth enamel and sediments shows that the main fossil-bearing suite (S1-S3) was deposited about 475 thousand years ago. Among the hominoid teeth excavated from S1-S3, some represent Homo erectus and Gigantopithecus blacki. Criteria are defined to differentiate these teeth from more numerous Pongo pygmaeus elements. The dated co-occurrence of Homo erectus and Gigantopithecus blacki at Tham Khuyen helps to establish the long co-existence of these two species throughout east Asia during the Early and Middle Pleistocene.
Resumo:
Metastasis is the ultimate life-threatening stage of cancer. The lack of accurate model systems thwarted studies of the metastatic cell’s basic biology. To follow continuously the succeeding stages of metastatic colony growth, we heritably labeled cells from the human lung adenocarcinoma cell line ANIP 973 with green fluorescent protein (GFP) by transfection with GFP cDNA. Labeled cells were then injected intravenously into nude mice, where, by 7 days, they formed brilliantly fluorescing metastatic colonies on mouse lung [Chishima, T., Miyagi, Y., Wang, X., Yang, M., Tan, Y., Shimada, H., Moossa, A. R. & Hoffman, R. M. (1997) Clin. Exp. Metastasis 15, 547–552]. The seeded lung tissue was then excised and incubated in the three-dimensional sponge-gel-matrix-supported histoculture that maintained the critical features of progressive in vivo tumor colonization while allowing continuous access for measurement and manipulation. Tumor progression was continuously visualized by GFP fluorescence in the same individual cultures over a 52-day period, during which the tumors spread throughout the lung. Histoculture tumor colonization was selective for lung cancer cells to grow on lung tissue, because no growth occurred on histocultured mouse liver tissue, which was also observed in vivo. The ability to support selective organ colonization in histoculture and visualize tumor progression by GFP fluorescence allows the in vitro study of the governing processes of metastasis [Kuo, T.-H., Kubota, T., Watanbe, M., Furukawa, T., Teramoto, T., Ishibiki, K., Kitajima, M., Moossa, A. R., Penman, S. & Hoffman, R. M. (1995) Proc. Natl. Acad. Sci. USA 92, 12085–12089]. The results presented here provide significant, new opportunities to understand and to develop treatments that prevent and possibly reverse metastasis.
Resumo:
Although much of the brain’s functional organization is genetically predetermined, it appears that some noninnate functions can come to depend on dedicated and segregated neural tissue. In this paper, we describe a series of experiments that have investigated the neural development and organization of one such noninnate function: letter recognition. Functional neuroimaging demonstrates that letter and digit recognition depend on different neural substrates in some literate adults. How could the processing of two stimulus categories that are distinguished solely by cultural conventions become segregated in the brain? One possibility is that correlation-based learning in the brain leads to a spatial organization in cortex that reflects the temporal and spatial clustering of letters with letters in the environment. Simulations confirm that environmental co-occurrence does indeed lead to spatial localization in a neural network that uses correlation-based learning. Furthermore, behavioral studies confirm one critical prediction of this co-occurrence hypothesis, namely, that subjects exposed to a visual environment in which letters and digits occur together rather than separately (postal workers who process letters and digits together in Canadian postal codes) do indeed show less behavioral evidence for segregated letter and digit processing.
Resumo:
Haptokinetic cell migration across surfaces is mediated by adhesion receptors including β1 integrins and CD44 providing adhesion to extracellular matrix (ECM) ligands such as collagen and hyaluronan (HA), respectively. Little is known, however, about how such different receptor systems synergize for cell migration through three-dimensionally (3-D) interconnected ECM ligands. In highly motile human MV3 melanoma cells, both β1 integrins and CD44 are abundantly expressed, support migration across collagen and HA, respectively, and are deposited upon migration, whereas only β1 integrins but not CD44 redistribute to focal adhesions. In 3-D collagen lattices in the presence or absence of HA and cross-linking chondroitin sulfate, MV3 cell migration and associated functions such as polarization and matrix reorganization were blocked by anti-β1 and anti-α2 integrin mAbs, whereas mAbs blocking CD44, α3, α5, α6, or αv integrins showed no effect. With use of highly sensitive time-lapse videomicroscopy and computer-assisted cell tracking techniques, promigratory functions of CD44 were excluded. 1) Addition of HA did not increase the migratory cell population or its migration velocity, 2) blocking of the HA-binding Hermes-1 epitope did not affect migration, and 3) impaired migration after blocking or activation of β1 integrins was not restored via CD44. Because α2β1-mediated migration was neither synergized nor replaced by CD44–HA interactions, we conclude that the biophysical properties of 3-D multicomponent ECM impose more restricted molecular functions of adhesion receptors, thereby differing from haptokinetic migration across surfaces.
Resumo:
The Ising problem consists in finding the analytical solution of the partition function of a lattice once the interaction geometry among its elements is specified. No general analytical solution is available for this problem, except for the one-dimensional case. Using site-specific thermodynamics, it is shown that the partition function for ligand binding to a two-dimensional lattice can be obtained from those of one-dimensional lattices with known solution. The complexity of the lattice is reduced recursively by application of a contact transformation that involves a relatively small number of steps. The transformation implemented in a computer code solves the partition function of the lattice by operating on the connectivity matrix of the graph associated with it. This provides a powerful new approach to the Ising problem, and enables a systematic analysis of two-dimensional lattices that model many biologically relevant phenomena. Application of this approach to finite two-dimensional lattices with positive cooperativity indicates that the binding capacity per site diverges as Na (N = number of sites in the lattice) and experiences a phase-transition-like discontinuity in the thermodynamic limit N → ∞. The zeroes of the partition function tend to distribute on a slightly distorted unit circle in complex plane and approach the positive real axis already for a 5×5 square lattice. When the lattice has negative cooperativity, its properties mimic those of a system composed of two classes of independent sites with the apparent population of low-affinity binding sites increasing with the size of the lattice, thereby accounting for a phenomenon encountered in many ligand-receptor interactions.
Resumo:
Cell adhesion to individual macromolecules of the extracellular matrix has dramatic effects on the subcellular localization of the actin-bundling protein fascin and on the ability of cells to form stable fascin microspikes. The actin-binding activity of fascin is down-regulated by phosphorylation, and we used two differentiated cell types, C2C12 skeletal myoblasts and LLC-PK1 kidney epithelial cells, to examine the hypothesis that cell adhesion to the matrix components fibronectin, laminin-1, and thrombospondin-1 differentially regulates fascin phosphorylation. In both cell types, treatment with the PKC activator 12-tetradecanoyl phorbol 13-acetate (TPA) or adhesion to fibronectin led to a diffuse distribution of fascin after 1 h. C2C12 cells contain the PKC family members α, γ, and λ, and PKCα localization was altered upon cell adhesion to fibronectin. Two-dimensional isoelectric focusing/SDS-polyacrylamide gels were used to determine that fascin became phosphorylated in cells adherent to fibronectin and was inhibited by the PKC inhibitors calphostin C and chelerythrine chloride. Phosphorylation of fascin was not detected in cells adherent to thrombospondin-1 or to laminin-1. LLC-PK1 cells expressing green fluorescent protein (GFP)-fascin also displayed similar regulation of fascin phosphorylation. LLC-PK1 cells expressing GFP-fascin S39A, a nonphosphorylatable mutant, did not undergo spreading and focal contact organization on fibronectin, whereas cells expressing a GFP-fascin S39D mutant with constitutive negative charge spread more extensively than wild-type cells. In contrast, C2C12 cells coexpressing S39A fascin with endogenous fascin remained competent to form microspikes on thrombospondin-1, and cells that expressed fascin S39D attached to thrombospondin-1 but did not form microspikes. Blockade of PKCα activity by TPA-induced down-regulation led to actin association of wild-type fascin in fibronectin-adherent C2C12 and LLC-PK1 cells but did not alter the distribution of S39A or S39D fascins. The association of fascin with actin in fibronectin-adherent cells was also evident in the presence of an inhibitory antibody to integrin α5 subunit. These novel results establish matrix-initiated PKC-dependent regulation of fascin phosphorylation at serine 39 as a mechanism whereby matrix adhesion is coupled to the organization of cytoskeletal structure.
Resumo:
The basement membrane (BM) extracellular matrix induces differentiation and suppresses apoptosis in mammary epithelial cells, whereas cells lacking BM lose their differentiated phenotype and undergo apoptosis. Addition of purified BM components, which are known to induce beta-casein expression, did not prevent apoptosis, indicating that a more complex BM was necessary. A comparison of culture conditions where apoptosis would or would not occur allowed us to relate inhibition of apoptosis to a complete withdrawal from the cell cycle, which was observed only when cells acquired a three-dimensional alveolar structure in response to BM. In the absence of this morphology, both the GI cyclin kinase inhibitor p21/WAF-1 and positive proliferative signals including c-myc and cyclin DI were expressed and the retinoblastoma protein (Rb) continued to be hyperphosphorylated. When we overexpressed either c-myc in quiescent cells or p21 when cells were still cycling, apoptosis was induced. In the absence of three-dimensional alveolar structures, mammary epithelial cells secrete a number of factors including transforming growth factor alpha and tenascin, which when added exogenously to quiescent cells induced expression of c-myc and interleukin-beta1-converting enzyme (ICE) mRNA and led to apoptosis. These experiments demonstrate that a correct tissue architecture is crucial for long-range homeostasis, suppression of apoptosis, and maintenance of differentiated phenotype.
Resumo:
In tissues of higher organisms homopolymers of alpha2,8-linked N-acetylneuraminic acid can be found as a posttranslational modification on selected proteins. We report here the discovery of homopolymers of alpha2,8-linked deaminoneuraminic acid [poly(alpha2,8-KDN)] in various tissues derived from all three germ layers in vertebrates including mammals. The monoclonal antibody kdn8kdn in conjunction with a bacterial KDNase permitted the detection of poly(alpha2,8-KDN) by immunohistochemistry and immunoblotting. Further evidence for the existence of poly(alpha2,8-KDN) was obtained by gas/liquid chromatography. The poly(alpha2,8-KDN) glycan was detectable in all tissues studied with the exception of mucus-producing cells present in various organs, the extracellular matrix, and basement membranes. However, in certain organs such as muscle, kidney, lung, and brain its expression was developmentally regulated. Despite its widespread tissue distribution, the poly(alpha2,8-KDN) glycan was detected on a single 150-kDa glycoprotein except for a single >350-kDa glycoprotein in kidney, which makes it most distinctive among polysialic acids. The ubiquitous yet selective expression may be indicative of a general function of the poly(alpha2,8-KDN)-bearing glycoproteins.
Resumo:
We report a general mass spectrometric approach for the rapid identification and characterization of proteins isolated by preparative two-dimensional polyacrylamide gel electrophoresis. This method possesses the inherent power to detect and structurally characterize covalent modifications. Absolute sensitivities of matrix-assisted laser desorption ionization and high-energy collision-induced dissociation tandem mass spectrometry are exploited to determine the mass and sequence of subpicomole sample quantities of tryptic peptides. These data permit mass matching and sequence homology searching of computerized peptide mass and protein sequence data bases for known proteins and design of oligonucleotide probes for cloning unknown proteins. We have identified 11 proteins in lysates of human A375 melanoma cells, including: alpha-enolase, cytokeratin, stathmin, protein disulfide isomerase, tropomyosin, Cu/Zn superoxide dismutase, nucleoside diphosphate kinase A, galaptin, and triosephosphate isomerase. We have characterized several posttranslational modifications and chemical modifications that may result from electrophoresis or subsequent sample processing steps. Detection of comigrating and covalently modified proteins illustrates the necessity of peptide sequencing and the advantages of tandem mass spectrometry to reliably and unambiguously establish the identity of each protein. This technology paves the way for studies of cell-type dependent gene expression and studies of large suites of cellular proteins with unprecedented speed and rigor to provide information complementary to the ongoing Human Genome Project.