12 resultados para Mycoplasma ovis

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A crucial step in exploiting the information inherent in genome sequences is to assign to each protein sequence its three-dimensional fold and biological function. Here we describe fold assignment for the proteins encoded by the small genome of Mycoplasma genitalium. The assignment was carried out by our computer server (http://www.doe-mbi.ucla.edu/people/frsvr/frsvr.html), which assigns folds to amino acid sequences by comparing sequence-derived predictions with known structures. Of the total of 468 protein ORFs, 103 (22%) can be assigned a known protein fold with high confidence, as cross-validated with tests on known structures. Of these sequences, 75 (16%) show enough sequence similarity to proteins of known structure that they can also be detected by traditional sequence–sequence comparison methods. That is, the difference of 28 sequences (6%) are assignable by the sequence–structure method of the server but not by current sequence–sequence methods. Of the remaining 78% of sequences in the genome, 18% belong to membrane proteins and the remaining 60% cannot be assigned either because these sequences correspond to no presently known fold or because of insensitivity of the method. At the current rate of determination of new folds by x-ray and NMR methods, extrapolation suggests that folds will be assigned to most soluble proteins in the next decade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The parasitic bacterium Mycoplasma genitalium has a small, reduced genome with close to a basic set of genes. As a first step toward determining the families of protein domains that form the products of these genes, we have used the multiple sequence programs psi-blast and geanfammer to match the sequences of the 467 gene products of M. genitalium to the sequences of the domains that form proteins of known structure [Protein Data Bank (PDB) sequences]. PDB sequences (274) match all of 106 M. genitalium sequences and some parts of another 85; thus, 41% of its total sequences are matched in all or part. The evolutionary relationships of the PDB domains that match M. genitalium are described in the structural classification of proteins (SCOP) database. Using this information, we show that the domains in the matched M. genitalium sequences come from 114 superfamilies and that 58% of them have arisen by gene duplication. This level of duplication is more than twice that found by using pairwise sequence comparisons. The PDB domain matches also describe the domain structure of the matched sequences: just over a quarter contain one domain and the rest have combinations of two or more domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genomic sequence of Mycoplasma pneumoniae establish this cell-wall-less prokaryote as among the smallest known microorganisms capable of self-replication. However, this genomic simplicity and corresponding biosynthetic austerity are sharply contrasted by the complex terminal structure found in this species. This tip structure (attachment organelle) directs colonization of the human respiratory mucosa, leading to bronchitis and atypical pneumonia. Furthermore, formation of a second tip structure appears to precede cell division, implying temporal regulation. However, the organization, regulation, and assembly of the attachment organelle in M. pneumoniae are poorly understood, and no counterparts have been identified among the walled bacteria. M. pneumoniae possesses a cytoskeleton-like structure required to localize adhesin proteins to the attachment organelle. The cytadherence-associated proteins HMW1, HMW2, and HMW3 are components of the mycoplasma cytoskeleton, with HMW1 localizing strictly along the filamentous extensions from the cell body and HMW3 being a key structural element of the terminal organelle. Disruptions in hmw2 result in the loss of HMW1 and HMW3. However, the hmw1 and hmw3 genes were transcribed and translated at wild-type levels in hmw2 mutants. HMW1 and HMW3 were relatively stable in the wild-type background over 8 h but disappeared in the mutants over this time period. Evaluation of recombinant HMW1 levels in mycoplasma mutants suggested a requirement for the C-terminal domain of HMW1 for turnover. Finally, an apparent defect in the processing of the precursor for the adhesin protein P1 was noted in the HMW− mutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have characterized a family of repetitive DNA elements with homology to the MgPa cellular adhesion operon of Mycoplasma genitalium, a bacterium that has the smallest known genome of any free-living organism. One element, 2272 bp in length and flanked by DNA with no homology to MgPa, was completely sequenced. At least four others were partially sequenced. The complete element is a composite of six regions. Five of these regions show sequence similarity with nonadjacent segments of genes of the MgPa operon. The sixth region, located near the center of the element, is an A+T-rich sequence that has only been found in this repeat family. Open reading frames are present within the five individual regions showing sequence homology to MgPa and the adjacent open reading frame 3 (ORF3) gene. However, termination codons are found between adjacent regions of homology to the MgPa operon and in the A+T-rich sequence. Thus, these repetitive elements do not appear to be directly expressible protein coding sequences. The sequence of one region from five different repetitive elements was compared with the homologous region of the MgPa gene from the type strain G37 and four newly isolated M. genitalium strains. Recombination between repetitive elements of strain G37 and the MgPa operon can explain the majority of polymorphisms within our partial sequences of the MgPa genes of the new isolates. Therefore, we propose that the repetitive elements of M. genitalium provide a reservoir of sequence that contributes to antigenic variation in proteins of the MgPa cellular adhesion operon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hsd genes of Mycoplasma pulmonis encode restriction and modification enzymes exhibiting a high degree of sequence similarity to the type I enzymes of enteric bacteria. The S subunits of type I systems dictate the DNA sequence specificity of the holoenzyme and are required for both the restriction and the modification reactions. The M. pulmonis chromosome has two hsd loci, both of which contain two hsdS genes each and are complex, site-specific DNA inversion systems. Embedded within the coding region of each hsdS gene are a minimum of three sites at which DNA inversions occur to generate extensive amino acid sequence variations in the predicted S subunits. We show that the polymorphic hsdS genes produced by gene rearrangement encode a family of functional S subunits with differing DNA sequence specificities. In addition to creating polymorphisms in hsdS sequences, DNA inversions regulate the phase-variable production of restriction activity because the other genes required for restriction activity (hsdR and hsdM) are expressed only from loci that are oriented appropriately in the chromosome relative to the hsd promoter. These data cast doubt on the prevailing paradigms that restriction systems are either selfish or function to confer protection from invasion by foreign DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although many new diseases have emerged within the past 2 decades [Cohen, M. L. (1998) Brit. Med. Bull. 54, 523–532], attributing low numbers of animal hosts to the existence of even a new pathogen is problematic. This is because very rarely does one have data on host abundance before and after the epizootic as well as detailed descriptions of pathogen prevalence [Dobson, A. P. & Hudson, P. J. (1985) in Ecology of Infectious Diseases in Natural Populations, eds. Grenfell, B. T. & Dobson, A. P. (Cambridge Univ. Press, Cambridge, U.K.), pp. 52–89]. Month by month we tracked the spread of the epizootic of an apparently novel strain of a widespread poultry pathogen, Mycoplasma gallisepticum, through a previously unknown host, the house finch, whose abundance has been monitored over past decades. Here we are able to demonstrate a causal relationship between high disease prevalence and declining house finch abundance throughout the eastern half of North America because the epizootic reached different parts of the house finch range at different times. Three years after the epizootic arrived, house finch abundance stabilized at similar levels, although house finch abundance had been high and stable in some areas but low and rapidly increasing in others. This result, not previously documented in wild populations, is as expected from theory if transmission of the disease was density dependent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recently sequenced genome of the parasitic bacterium Mycoplasma genitalium contains only 468 identified protein-coding genes that have been dubbed a minimal gene complement [Fraser, C.M., Gocayne, J.D., White, O., Adams, M.D., Clayton, R.A., et al. (1995) Science 270, 397-403]. Although the M. genitalium gene complement is indeed the smallest among known cellular life forms, there is no evidence that it is the minimal self-sufficient gene set. To derive such a set, we compared the 468 predicted M. genitalium protein sequences with the 1703 protein sequences encoded by the other completely sequenced small bacterial genome, that of Haemophilus influenzae. M. genitalium and H. influenzae belong to two ancient bacterial lineages, i.e., Gram-positive and Gram-negative bacteria, respectively. Therefore, the genes that are conserved in these two bacteria are almost certainly essential for cellular function. It is this category of genes that is most likely to approximate the minimal gene set. We found that 240 M. genitalium genes have orthologs among the genes of H. influenzae. This collection of genes falls short of comprising the minimal set as some enzymes responsible for intermediate steps in essential pathways are missing. The apparent reason for this is the phenomenon that we call nonorthologous gene displacement when the same function is fulfilled by nonorthologous proteins in two organisms. We identified 22 nonorthologous displacements and supplemented the set of orthologs with the respective M. genitalium genes. After examining the resulting list of 262 genes for possible functional redundancy and for the presence of apparently parasite-specific genes, 6 genes were removed. We suggest that the remaining 256 genes are close to the minimal gene set that is necessary and sufficient to sustain the existence of a modern-type cell. Most of the proteins encoded by the genes from the minimal set have eukaryotic or archaeal homologs but seven key proteins of DNA replication do not. We speculate that the last common ancestor of the three primary kingdoms had an RNA genome. Possibilities are explored to further reduce the minimal set to model a primitive cell that might have existed at a very early stage of life evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three-dimensional structure of protein kinase C interacting protein 1 (PKCI-1) has been solved to high resolution by x-ray crystallography using single isomorphous replacement with anomalous scattering. The gene encoding human PKCI-1 was cloned from a cDNA library by using a partial sequence obtained from interactions identified in the yeast two-hybrid system between PKCI-1 and the regulatory domain of protein kinase C-beta. The PKCI-1 protein was expressed in Pichia pastoris as a dimer of two 13.7-kDa polypeptides. PKCI-1 is a member of the HIT family of proteins, shown by sequence identity to be conserved in a broad range of organisms including mycoplasma, plants, and humans. Despite the ubiquity of this protein sequence in nature, no distinct function has been shown for the protein product in vitro or in vivo. The PKCI-1 protomer has an alpha+beta meander fold containing a five-stranded antiparallel sheet and two helices. Two protomers come together to form a 10-stranded antiparallel sheet with extensive contacts between a helix and carboxy terminal amino acids of a protomer with the corresponding amino acids in the other protomer. PKCI-1 has been shown to interact specifically with zinc. The three-dimensional structure has been solved in the presence and absence of zinc and in two crystal forms. The structure of human PKCI-1 provides a model of this family of proteins which suggests a stable fold conserved throughout nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The jaagsiekte sheep retrovirus (JSRV), which appears to be a type B/D retrovirus chimera, has been incriminated as the cause of ovine pulmonary carcinoma. Recent studies suggest that the sequences related to this virus are found in the genomes of normal sheep and goats. To learn whether there are breeds of sheep that lack the endogenous viral sequences and to study their distribution among other groups of mammals, we surveyed several domestic sheep and goat breeds, other ungulates, and various mammal groups for sequences related to JSRV. Probes prepared from the envelope (SU) region of JSRV and the capsid (CA) region of a Peruvian type D virus related to JSRV were used in Southern blot hybridization with genomic DNA followed by low- and high-stringency washes. Fifteen to 20 CA and SU bands were found in all members of the 13 breeds of domestic sheep and 6 breeds of goats tested. There were similar findings in 6 wild Ovis and Capra genera. Within 22 other genera of Bovidae including domestic cattle, and 7 other families of Artiodactyla including Cervidae, there were usually a few CA or SU bands at low stringency and rare bands at high stringency. Among 16 phylogenetically distant genera, there were generally fewer bands hybridizing with either probe. These results reveal wide-spread phylogenetic distribution of endogenous type B and type D retroviral sequences related to JSRV among mammals and argue for further investigation of their potential role in disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first protein component of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system (PTS) is the 64-kDa protein enzyme I (EI), which can be phosphorylated by phosphoenolpyruvate (PEP) and carry out phosphotransfer to the acceptor heat-stable protein (HPr). The isolated amino-terminal domain (EIN) of E. coli EI is no longer phosphorylated by PEP but retains the ability to participate in reversible phosphotransfer to HPr. An expression vector was constructed for the production of large amounts of EIN, and conditions were developed for maximal expression of the protein. A three-column procedure is described for purification to homogeneity of EIN; a 500-ml culture yields approximately 80 mg of pure protein in about a 75% yield. Intact E. coli EI is effective in phosphotransfer from PEP to HPr from E. coli but not to the HPrs from Bacillus subtilis or Mycoplasma capricolum. Phosphotransfer from EI to enzyme IIAglc (EIIAglc) from E. coli or M. capricolum requires the intermediacy of HPr. The phosphorylated form of EIN is capable of more general phosphotransfer; it will effect phosphotransfer to HPrs from E. coli, B. subtilis, and M. capricolum as well as to EIAglc from E. coli. These studies demonstrate that the carboxyl-terminal domain of EI confers on the protein the capability to accept a phosphoryl group from PEP as well as a discriminator function that allows the intact protein to promote effective phosphoryl transfer only to E. coli HPr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oncogenic potential of human mycoplasmas was studied using cultured mouse embryo cells, C3H/10T1/2 (C3H). Mycoplasma fermentans and Mycoplasma penetrans, mycoplasmas found in unusually high frequencies among patients with AIDS, were examined. Instead of acute transformation, a multistage process in promotion and progression of malignant cell transformation with long latency was noted; after 6 passages (1 wk per passage) of persistent infection with M. fermentans, C3H cells exhibited phenotypic changes with malignant characteristics that became progressively more prominent with further prolonged infection. Up to at least the 11th passage, all malignant changes were reversible if mycoplasmas were eradicated by antibiotic treatment. Further persistent infection with the mycoplasmas until 18 passages resulted in an irreversible form of transformation that included the ability to form tumors in animals and high soft agar cloning efficiency. Whereas chromosomal loss and translocational changes in C3H cells infected by either mycoplasma during the reversible stage were not prominent, the onset of the irreversible phase of transformation coincided with such karyotypic alteration. Genetic instability--i.e., prominent chromosomal alteration of permanently transformed cells--was most likely caused by mutation of a gene(s) responsible for fidelity of DNA replication or repair. Once induced, chromosomal alterations continued to accumulate both in cultured cells and in animals without the continued presence of the transforming microbes. Mycoplasma-mediated multistage oncogenesis exhibited here shares many characteristics found in the development of human cancer.