15 resultados para Multiple Hypothesis Testing
em National Center for Biotechnology Information - NCBI
Resumo:
Requirements for testing include advance specification of the conditional rate density (probability per unit time, area, and magnitude) or, alternatively, probabilities for specified intervals of time, space, and magnitude. Here I consider testing fully specified hypotheses, with no parameter adjustments or arbitrary decisions allowed during the test period. Because it may take decades to validate prediction methods, it is worthwhile to formulate testable hypotheses carefully in advance. Earthquake prediction generally implies that the probability will be temporarily higher than normal. Such a statement requires knowledge of "normal behavior"--that is, it requires a null hypothesis. Hypotheses can be tested in three ways: (i) by comparing the number of actual earth-quakes to the number predicted, (ii) by comparing the likelihood score of actual earthquakes to the predicted distribution, and (iii) by comparing the likelihood ratio to that of a null hypothesis. The first two tests are purely self-consistency tests, while the third is a direct comparison of two hypotheses. Predictions made without a statement of probability are very difficult to test, and any test must be based on the ratio of earthquakes in and out of the forecast regions.
Resumo:
Evolutionary trees are often estimated from DNA or RNA sequence data. How much confidence should we have in the estimated trees? In 1985, Felsenstein [Felsenstein, J. (1985) Evolution 39, 783–791] suggested the use of the bootstrap to answer this question. Felsenstein’s method, which in concept is a straightforward application of the bootstrap, is widely used, but has been criticized as biased in the genetics literature. This paper concerns the use of the bootstrap in the tree problem. We show that Felsenstein’s method is not biased, but that it can be corrected to better agree with standard ideas of confidence levels and hypothesis testing. These corrections can be made by using the more elaborate bootstrap method presented here, at the expense of considerably more computation.
Resumo:
Site-directed mutagenesis and combinatorial libraries are powerful tools for providing information about the relationship between protein sequence and structure. Here we report two extensions that expand the utility of combinatorial mutagenesis for the quantitative assessment of hypotheses about the determinants of protein structure. First, we show that resin-splitting technology, which allows the construction of arbitrarily complex libraries of degenerate oligonucleotides, can be used to construct more complex protein libraries for hypothesis testing than can be constructed from oligonucleotides limited to degenerate codons. Second, using eglin c as a model protein, we show that regression analysis of activity scores from library data can be used to assess the relative contributions to the specific activity of the amino acids that were varied in the library. The regression parameters derived from the analysis of a 455-member sample from a library wherein four solvent-exposed sites in an α-helix can contain any of nine different amino acids are highly correlated (P < 0.0001, R2 = 0.97) to the relative helix propensities for those amino acids, as estimated by a variety of biophysical and computational techniques.
Resumo:
Evolutionary trees are often estimated from DNA or RNA sequence data. How much confidence should we have in the estimated trees? In 1985, Felsenstein [Felsenstein, J. (1985) Evolution 39, 783-791] suggested the use of the bootstrap to answer this question. Felsenstein's method, which in concept is a straightforward application of the bootstrap, is widely used, but has been criticized as biased in the genetics literature. This paper concerns the use of the bootstrap in the tree problem. We show that Felsenstein's method is not biased, but that it can be corrected to better agree with standard ideas of confidence levels and hypothesis testing. These corrections can be made by using the more elaborate bootstrap method presented here, at the expense of considerably more computation.
Resumo:
The controversy over the interpretation of DNA profile evidence in forensic identification can be attributed in part to confusion over the mode(s) of statistical inference appropriate to this setting. Although there has been substantial discussion in the literature of, for example, the role of population genetics issues, few authors have made explicit the inferential framework which underpins their arguments. This lack of clarity has led both to unnecessary debates over ill-posed or inappropriate questions and to the neglect of some issues which can have important consequences. We argue that the mode of statistical inference which seems to underlie the arguments of some authors, based on a hypothesis testing framework, is not appropriate for forensic identification. We propose instead a logically coherent framework in which, for example, the roles both of the population genetics issues and of the nonscientific evidence in a case are incorporated. Our analysis highlights several widely held misconceptions in the DNA profiling debate. For example, the profile frequency is not directly relevant to forensic inference. Further, very small match probabilities may in some settings be consistent with acquittal. Although DNA evidence is typically very strong, our analysis of the coherent approach highlights situations which can arise in practice where alternative methods for assessing DNA evidence may be misleading.
Resumo:
Molecular studies have the potential to shed light on the origin of the animal phyla by providing independent estimates of the divergence times, but have been criticized for failing to account adequately for variation in rate of evolution. A method of dating divergence times from molecular data addresses the criticisms of earlier studies and provides more realistic, but wider, confidence intervals. The data are not compatible with the Cambrian explosion hypothesis as an explanation for the origin of metazoan phyla, and provide additional support for an extended period of Precambrian metazoan diversification.
Resumo:
Apolipoprotein B (apoB) mRNA editing catalyzed by apoB mRNA editing catalytic subunit 1 (APOBEC-1) has been proposed to be a nuclear process. To test this hypothesis, the subcellular distribution of hemagglutinin-(HA) tagged APOBEC-1 expressed in transiently transfected hepatoma cells was determined by indirect immunofluorescence microscopy. HA-APOBEC-1 was detected in both the nucleus and cytoplasm of rat and human hepatoma cells. Mutagenesis of APOBEC-1 demonstrated that the N-terminal 56 amino acids (1–56) were necessary for the nuclear distribution of APOBEC-1, but this region did not contain a functional nuclear localization signal (NLS). However, we identified a 24-amino acid domain in the C terminus of APOBEC-1 with characteristics of a cytoplasmic retention signal (CRS) or a nuclear export signal (NES). These data suggest, therefore, that the nuclear import of APOBEC-1 may not be mediated by a positive NLS; rather, it may be achieved by overcoming the effect of a CRS/NES. We also demonstrated that the nuclear distribution of APOBEC-1 occurred only in cell lines that were capable of editing apoB RNA. We propose that the cellular distribution of APOBEC-1 is determined by multiple domains within this protein, and a nuclear localization of the enzyme may be regulated by cell type-specific factors that render these cells uniquely editing competent.
Resumo:
The budding yeast IQGAP-like protein Cyk1p/Iqg1p localizes to the mother-bud junction during anaphase and has been shown to be required for the completion of cytokinesis. In this study, video microscopy analysis of cells expressing green fluorescent protein-tagged Cyk1p/Iqg1p demonstrates that Cyk1p/Iqg1p is a dynamic component of the contractile ring during cytokinesis. Furthermore, in the absence of Cyk1p/Iqg1p, myosin II fails to undergo the contraction-like size change at the end of mitosis. To understand the mechanistic role of Cyk1p/Iqg1p in actomyosin ring assembly and dynamics, we have investigated the role of the structural domains that Cyk1p/Iqg1p shares with IQGAPs. An amino terminal portion containing the calponin homology domain binds to actin filaments and is required for the assembly of actin filaments to the ring. This result supports the hypothesis that Cyk1p/Iqg1p plays a direct role in F-actin recruitment. Deletion of the domain harboring the eight IQ motifs abolishes the localization of Cyk1p/Iqg1p to the bud neck, suggesting that Cyk1p/Iqg1p may be localized through interactions with a calmodulin-like protein. Interestingly, deletion of the COOH-terminal GTPase-activating protein-related domain does not affect Cyk1p/Iqg1p localization or actin recruitment to the ring but prevents actomyosin ring contraction. In vitro binding experiments show that Cyk1p/Iqg1p binds to calmodulin, Cmd1p, in a calcium-dependent manner, and to Tem1p, a small GTP-binding protein previously found to be required for the completion of anaphase. These results demonstrate the critical function of Cyk1p/Iqg1p in regulating various steps of actomyosin ring assembly and cytokinesis.
Resumo:
The rewards of promiscuity for males are undisputed. But why should a female mate promiscuously, particularly when her partners offer no resources other than sperm and increase her chances of succumbing to predation or disease? This question has been hotly debated but at present remains largely unresolved [Jennions, M. D. & Petrie, M. (2000) Biol. Rev. 75, 21–64]. One possibility is that females exploit postcopulatory mechanisms, such as sperm competition, to increase both the quality and quantity of their offspring. In this paper, we use the Trinidadian guppy, a species with a resource-free mating system, to test the hypothesis that females gain multiple benefits from multiple mating. Our results indicate that multiply mated females secure substantive advantages: They have shorter gestation times and larger broods, and they produce offspring with better developed schooling abilities and escape responses than their singly mated counterparts.
Resumo:
Six alternative hypotheses for the phylogenetic origin of Bilateria are evaluated by using complete 18S rRNA gene sequences for 52 taxa. These data suggest that there is little support for three of these hypotheses. Bilateria is not likely to be the sister group of Radiata or Ctenophora, nor is it likely that Bilateria gave rise to Cnidaria or Ctenophora. Instead, these data reveal a close relationship between bilaterians, placozoans, and cnidarians. From this, several inferences can be drawn. Morphological features that previously have been identified as synapomorphies of Bilateria and Ctenophora, e.g., mesoderm, more likely evolved independently in each clade. The endomesodermal muscles of bilaterians may be homologous to the endodermal muscles of cnidarians, implying that the original bilaterian mesodermal muscles were myoepithelial. Placozoans should have a gastrulation stage during development. Of the three hypotheses that cannot be falsified with the 18S rRNA data, one is most strongly supported. This hypothesis states that Bilateria and Placozoa share a more recent common ancestor than either does to Cnidaria. If true, the simplicity of placozoan body architecture is secondarily derived from a more complex ancestor. This simplification may have occurred in association with a planula-type larva becoming reproductive before metamorphosis. If this simplification took place during the common history that placozoans share with bilaterians, then placozoan genes that contain a homeobox, such as Trox2, should be explored, for they may include the gene or genes most closely related to Hox genes of bilaterians.
Resumo:
The conditioning of cocaine's subjective actions with environmental stimuli may be a critical factor in long-lasting relapse risk associated with cocaine addiction. To study the significance of learning factors in persistent addictive behavior as well as the neurobiological basis of this phenomenon, rats were trained to associate discriminative stimuli (SD) with the availability of i.v. cocaine vs. nonrewarding saline solution, and then placed on extinction conditions during which the i.v. solutions and SDs were withheld. The effects of reexposure to the SD on the recovery of responding at the previously cocaine-paired lever and on Fos protein expression then were determined in two groups. One group was tested immediately after extinction, whereas rats in the second group were confined to their home cages for an additional 4 months before testing. In both groups, the cocaine SD, but not the non-reward SD, elicited strong recovery of responding and increased Fos immunoreactivity in the basolateral amygdala and medial prefrontal cortex (areas Cg1/Cg3). The response reinstatement and Fos expression induced by the cocaine SD were both reversed by selective dopamine D1 receptor antagonists. The undiminished efficacy of the cocaine SD to elicit drug-seeking behavior after 4 months of abstinence parallels the long-lasting nature of conditioned cue reactivity and cue-induced cocaine craving in humans, and confirms a significant role of learning factors in the long-lasting addictive potential of cocaine. Moreover, the results implicate D1-dependent neural mechanisms within the medial prefrontal cortex and basolateral amygdala as substrates for cocaine-seeking behavior elicited by cocaine-predictive environmental stimuli.
Resumo:
The Tiebout Hypothesis asserts that, when it is efficient to have multiple jurisdictions providing local public goods, then competition between jurisdictions for residents will lead to a near-optimal outcome. Research from cooperative game theory both provides a foundation for the hypothesis and extends the hypothesis to diverse situations where small groups of participants are effective.
Resumo:
The current phylogenetic hypothesis for the evolution and biogeography of fiddler crabs relies on the assumption that complex behavioral traits are assumed to also be evolutionary derived. Indo-west Pacific fiddler crabs have simpler reproductive social behavior and are more marine and were thought to be ancestral to the more behaviorally complex and more terrestrial American species. It was also hypothesized that the evolution of more complex social and reproductive behavior was associated with the colonization of the higher intertidal zones. Our phylogenetic analysis, based upon a set of independent molecular characters, however, demonstrates how widely entrenched ideas about evolution and biogeography led to a reasonable, but apparently incorrect, conclusion about the evolutionary trends within this pantropical group of crustaceans. Species bearing the set of "derived traits" are phylogenetically ancestral, suggesting an alternative evolutionary scenario: the evolution of reproductive behavioral complexity in fiddler crabs may have arisen multiple times during their evolution. The evolution of behavioral complexity may have arisen by coopting of a series of other adaptations for high intertidal living and antipredator escape. A calibration of rates of molecular evolution from populations on either side of the Isthmus of Panama suggest a sequence divergence rate for 16S rRNA of 0.9% per million years. The divergence between the ancestral clade and derived forms is estimated to be approximately 22 million years ago, whereas the divergence between the American and Indo-west Pacific is estimated to be approximately 17 million years ago.
Resumo:
The neural cell adhesion molecule (N-CAM) mediates homophilic binding between a variety of cell types including neurons, neurons and glia, and neurons and muscle cells. The mechanism by which N-CAM on one cell interacts with N-CAM on another, however, is unknown. Attempts to identify which of the five immunoglobulin-like domains (Ig I-V) and the two fibronectin type III repeats (FnIII 1-2) in the extracellular region of N-CAM are involved in this process have led to ambiguous results. We have generated soluble recombinant proteins corresponding to each of the individual immunoglobulin domains and the combined FnIII 1-2 and prepared polyclonal antibodies specific for each. The purified proteins and antibodies were used in aggregation experiments with fluorescent microspheres and chicken embryo brain cells to determine possible contributions of each domain to homophilic adhesion. The recombinant domains were tested for their ability to bind to purified native N-CAM, to bind to each other, and to inhibit the aggregation of N-CAM on microspheres and the aggregation of neuronal cells. Each of the immunoglobulin domains bound to N-CAM, and in solution all of the immunoglobulin domains inhibited the aggregation of N-CAM-coated microspheres. Soluble Ig II, Ig III, and Ig IV inhibited neuronal aggregation; antibodies against whole N-CAM, the Ig III domain, and the Ig I domain all strongly inhibited neuronal aggregation, as well as the aggregation of N-CAM-coated microspheres. Of all the domains, the third immunoglobulin domain alone demonstrated the ability to self-aggregate, whereas Ig I bound to Ig V and Ig II bound to Ig IV. The combined FnIII 1-2 exhibited a slight ability to self-aggregate but did not bind to any of the immunoglobulin-like domains. These results suggest that N-CAM-N-CAM binding involves all five immunoglobulin domains and prompt the hypothesis that in homophilic cell-cell binding mediated by N-CAM these domains may interact pairwise in an antiparallel orientation.
Resumo:
Aberrant expression of transforming growth factor beta 1 (TGF-beta 1) has been implicated in a number of disease processes, particularly those involving fibrotic and inflammatory lesions. To determine the in vivo effects of overexpression of TGF-beta 1 on the function and structure of hepatic as well as extrahepatic tissues, transgenic mice were generated containing a fusion gene (Alb/TGF-beta 1) consisting of modified porcine TGF-beta 1 cDNA under the control of the regulatory elements of the mouse albumin gene. Five transgenic lines were developed, all of which expressed the Alb/TGF-beta 1 transgene selectively in hepatocytes. The transgenic line 25 expressing the highest level of the transgene in the liver also had high (> 10-fold over control) plasma levels of TGF-beta 1. Hepatic fibrosis and apoptotic death of hepatocytes developed in all the transgenic lines but was more pronounced in line 25. The fibrotic process was characterized by deposition of collagen around individual hepatocytes and within the space of Disse in a radiating linear pattern. Several extrahepatic lesions developed in line 25, including glomerulonephritis and renal failure, arteritis and myocarditis, as well as atrophic changes in pancreas and testis. The results from this transgenic model strongly support the proposed etiological role for TGF-beta 1 in a variety of fibrotic and inflammatory disorders. The transgenic model may also provide an appropriate paradigm for testing therapeutic interventions aimed at neutralizing the detrimental effects of this important cytokine.