7 resultados para Movement expression in artificial agents

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The α9 acetylcholine receptor (α9 AChR) is specifically expressed in hair cells of the inner ear and is believed to be involved in synaptic transmission between efferent nerves and hair cells. Using a recently developed method, we modified a bacterial artificial chromosome containing the mouse α9 AChR gene with a reporter gene encoding green fluorescent protein (GFP) to generate transgenic mice. GFP expression in transgenic mice recapitulated the known temporal and spatial expression of α9 AChR. However, we observed previously unidentified dynamic changes in α9 AChR expression in cochlear and vestibular sensory epithelia during neonatal development. In the cochlea, inner hair cells persistently expressed high levels of α9 AChR in both the apical and middle turns, whereas both outer and inner hair cells displayed dynamic changes of α9 AChR expression in the basal turn. In the utricle, we observed high levels of α9 AChR expression in the striolar region during early neonatal development and high levels of α9 AChR in the extrastriolar region in adult mice. Further, simultaneous visualization of efferent innervation and α9 AChR expression showed that dynamic expression of α9 AChR in developing hair cells was independent of efferent contacts. We propose that α9 AChR expression in developing auditory and vestibular sensory epithelia correlates with maturation of hair cells and is hair-cell autonomous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the study of microbes moves into the era of functional genomics, there is an increasing need for molecular tools for analysis of a wide diversity of microorganisms. Currently, biological study of many prokaryotes of agricultural, medical, and fundamental scientific interest is limited by the lack of adequate genetic tools. We report the application of the bacterial artificial chromosome (BAC) vector to prokaryotic biology as a powerful approach to address this need. We constructed a BAC library in Escherichia coli from genomic DNA of the Gram-positive bacterium Bacillus cereus. This library provides 5.75-fold coverage of the B. cereus genome, with an average insert size of 98 kb. To determine the extent of heterologous expression of B. cereus genes in the library, we screened it for expression of several B. cereus activities in the E. coli host. Clones expressing 6 of 10 activities tested were identified in the library, namely, ampicillin resistance, zwittermicin A resistance, esculin hydrolysis, hemolysis, orange pigment production, and lecithinase activity. We analyzed selected BAC clones genetically to identify rapidly specific B. cereus loci. These results suggest that BAC libraries will provide a powerful approach for studying gene expression from diverse prokaryotes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To analyze the function of the 5' DNase I hypersensitive sites (HSs) of the locus control region (LCR) on beta-like globin gene expression, a 2.3-kb deletion of 5'HS3 or a 1.9-kb deletion of 5'HS2 was recombined into a beta-globin locus yeast artificial chromosome, and transgenic mice were produced. Deletion of 5'HS3 resulted in a significant decrease of epsilon-globin gene expression and an increase of gamma-globin gene expression in embryonic cells. Deletion of 5'HS2 resulted in only a small decrease in expression of epsilon-, gamma-, and beta-globin mRNA at all stages of development. Neither deletion affected the temporal pattern of globin gene switching. These results suggest that the LCR contains functionally redundant elements and that LCR complex formation does not require the presence of all DNase I hypersensitive sites. The phenotype of the 5'HS3 deletion suggests that individual HSs may influence the interaction of the LCR with specific globin gene promoters during the course of ontogeny.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmids encoding various external guide sequences (EGSs) were constructed and inserted into Escherichia coli. In strains harboring the appropriate plasmids, the expression of fully induced beta-galactosidase and alkaline phosphatase activity was reduced by more than 50%, while no reduction in such activity was observed in strains with non-specific EGSs. The inhibition of gene expression was virtually abolished at restrictive temperatures in strains that were temperature-sensitive for RNase P (EC 3.1.26.5). Northern blot analysis showed that the steady-state copy number of EGS RNAs was several hundred per cell in vivo. A plasmid that contained a gene for M1 RNA covalently linked to a specific EGS reduced the level of expression of a suppressor tRNA that was encoded by a separate plasmid. Similar methods can be used to regulate gene expression in E. coli and to mimic the properties of cold-sensitive mutants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex three-dimensional waves of excitation can explain the observed cell movement pattern in Dictyostelium slugs. Here we show that these three-dimensional waves can be produced by a realistic model for the cAMP relay system [Martiel, J. L. & Goldbeter, A. (1987) Biophys J. 52, 807-828]. The conversion of scroll waves in the prestalk zone of the slug into planar wave fronts in the prespore zone can result from a smaller fraction of relaying cells in the prespore zone. Further, we show that the cAMP concentrations to which cells in a slug are exposed over time display a simple pattern, despite the complex spatial geometry of the waves. This cAMP distribution agrees well with observed patterns of cAMP-regulated cell type-specific gene expression. The core of the spiral, which is a region of low cAMP concentration, might direct expression of stalk-specific genes during culmination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mesencephalic dopaminergic (mesDA) system regulates behavior and movement control and has been implicated in psychiatric and affective disorders. We have identified a bicoid-related homeobox gene, Ptx3, a member of the Ptx-subfamily, that is uniquely expressed in these neurons. Its expression starting at E11.5 in the developing mouse midbrain correlates with the appearance of mesDA neurons. The number of Ptx3-expressing neurons is reduced in Parkinson patients, and these neurons are absent from 6-hydroxy-dopamine-lesioned rats, an animal model for this disease. Thus, Ptx3 is a unique transcription factor marking the mesDA neurons at the exclusion of other dopaminergic neurons, and it may be involved in developmental determination of this neuronal lineage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical and physical signals have been reported to mediate wound-induced proteinase inhibitor II (Pin2) gene expression in tomato and potato plants. Among the chemical signals, phytohormones such as abscisic acid (ABA) and jasmonic acid (JA) and the peptide systemin represent the best characterized systems. Furthermore, electrical and hydraulic mechanisms have also been postulated as putative Pin2-inducing systemic signals. Most of the chemical agents are able to induce Pin2 gene expression without any mechanical wounding. Thus, ABA, JA, and systemin initiate Pin2 mRNA accumulation in the directly treated leaves and in the nontreated leaves (systemic) that are located distal to the treated ones. ABA-deficient tomato and potato plants do not respond to wounding by accumulation of Pin2 mRNA, therefore providing a suitable model system for analysis of the signal transduction pathway involved in wound-induced gene activation. It was demonstrated that the site of action of JA is located downstream to the site of action of ABA. Moreover, systemin represents one of the initial steps in the signal transduction pathway regulating the wound response. Recently, it was reported that heat treatment and mechanical injury generate electrical signals, which propagate throughout the plant. These signals are capable of inducing Pin2 gene expression in the nontreated leaves of wounded plants. Furthermore, electrical current application to tomato leaves leads to an accumulation of Pin2 mRNA in local and systemic tissues. Examination of photosynthetic parameters (assimilation and transpiration rate) on several types of stimuli suggests that heat-induced Pin2 gene expression is regulated by an alternative pathway from that mediating the electrical current and mechanical wound response.