5 resultados para Mourning dove.

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcriptional activators in prokaryotes have been shown to stimulate different steps in the initiation process including the initial binding of RNA polymerase (RNAP) to the promoter and a postbinding step known as the isomerization step. Evidence suggests that activators that affect initial binding can work by a cooperative binding mechanism by making energetically favorable contacts with RNAP, but the mechanism by which activators affect the isomerization step is unclear. A well-studied example of an activator that normally exerts its effect exclusively on the isomerization step is the bacteriophage λ cI protein (λcI), which has been shown genetically to interact with the C-terminal region of the σ70 subunit of RNAP. We show here that the interaction between λcI and σ can stimulate transcription even when the relevant portion of σ is transplanted to another subunit of RNAP. This activation depends on the ability of λcI to stabilize the binding of the transplanted σ moiety to an ectopic −35 element. Based on these and previous findings, we discuss a simple model that explains how an activator's ability to stabilize the binding of an RNAP subdomain to the DNA can account for its effect on either the initial binding of RNAP to a promoter or the isomerization step.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classical familial adenomatous polyposis (FAP) is a high-penetrance autosomal dominant disease that predisposes to hundreds or thousands of colorectal adenomas and carcinoma and that results from truncating mutations in the APC gene. A variant of FAP is attenuated adenomatous polyposis coli, which results from germ-line mutations in the 5′ and 3′ regions of the APC gene. Attenuated adenomatous polyposis coli patients have “multiple” colorectal adenomas (typically fewer than 100) without the florid phenotype of classical FAP. Another group of patients with multiple adenomas has no mutations in the APC gene, and their phenotype probably results from variation at a locus, or loci, elsewhere in the genome. Recently, however, a missense variant of APC (I1307K) was described that confers an increased risk of colorectal tumors, including multiple adenomas, in Ashkenazim. We have studied a set of 164 patients with multiple colorectal adenomas and/or carcinoma and analyzed codons 1263–1377 (exon 15G) of the APC gene for germ-line variants. Three patients with the I1307K allele were detected, each of Ashkenazi descent. Four patients had a germ-line E1317Q missense variant of APC that was not present in controls; one of these individuals had an unusually large number of metaplastic polyps of the colorectum. There is increasing evidence that there exist germ-line variants of the APC gene that predispose to the development of multiple colorectal adenomas and carcinoma, but without the florid phenotype of classical FAP, and possibly with importance for colorectal cancer risk in the general population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies of Min/+ (multiple intestinal neoplasia) mice on a sensitive genetic background, C57BL/6 (B6), showed that adenomas have lost heterozygosity for the germ-line ApcMin mutation in the Apc (adenomatous polyposis coli) gene. We now report that on a strongly resistant genetic background, AKR/J (AKR), Min-induced adenoma multiplicity is reduced by about two orders of magnitude compared with that observed on the B6 background. Somatic treatment with a strong mutagen increases tumor number in AKR Min/+ mice in an age-dependent manner, similar to results previously reported for B6 Min/+ mice. Immunohistochemical analyses indicate that Apc expression is suppressed in all intestinal tumors from both untreated and treated AKR Min/+ mice. However, the mechanism of Apc inactivation in AKR Min/+ mice often differs from that observed for B6 Min/+ mice. Although loss of heterozygosity is observed in some tumors, a significant percentage of tumors showed neither loss of heterozygosity nor Apc truncation mutations. These results extend our understanding of the effects of genetic background on Min-induced tumorigenesis in several ways. First, the AKR strain carries modifiers of Min in addition to Mom1. This combination of AKR modifiers can almost completely suppress spontaneous intestinal tumorigenesis associated with the Min mutation. Second, even on such a highly resistant genetic background, tumor formation continues to involve an absence of Apc function. The means by which Apc function is inactivated is affected by genetic background. Possible scenarios are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When tumors form in intestinal epithelia, it is important to know whether they involve single initiated somatic clones. Advanced carcinomas in humans and mice are known to be monoclonal. However, earlier stages of tumorigenesis may instead involve an interaction between cells that belong to separate somatic clones within the epithelium. The clonality of early tumors has been investigated in mice with an inherited predisposition to intestinal tumors. Analysis of Min (multiple intestinal neoplasia) mice chimeric for a ubiquitously expressed cell lineage marker revealed that normal intestinal crypts are monoclonal, but intestinal adenomas frequently have a polyclonal structure, presenting even when very small as single, focal adenomas composed of at least two somatic lineages. Furthermore, within these polyclonal adenomas, all tumor lineages frequently lose the wild-type Apc allele. These observations can be interpreted by several models for clonal interaction within the epithelium, ranging from passive fusion within regions of high neoplastic potential to a requirement for active clonal cooperation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The earliest characterized events during induction of tubulogenesis in renal anlage include the condensation or compaction of metanephrogenic mesenchyme with the concurrent upregulation of WT1, the gene encoding the Wilms tumor transcriptional activator/suppressor. We report that basic fibroblast growth factor (FGF2) can mimic the early effects of an inductor tissue by promoting the condensation of mesenchyme and inhibiting the tissue degeneration associated with the absence of an inductor tissue. By in situ hybridization, FGF2 was also found to mediate the transcriptional activation of WT1 and of the hepatocyte growth factor receptor gene, c-met. Although FGF2 can induce these early events of renal tubulogenesis, it cannot promote the epithelial conversion associated with tubule formation in metanephrogenic mesenchyme. For this, an undefined factor(s) from pituitary extract in combination with FGF2 can cause tubule formation in uninduced mesenchyme. These findings support the concept that induction in kidney is a multiphasic process that is mediated by more than a single comprehensive inductive factor and that soluble molecules can mimic these inductive activities in isolated uninduced metanephrogenic mesenchyme.