4 resultados para Motor control system

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epithelial Na+ channels are expressed widely in absorptive epithelia such as the renal collecting duct and the colon and play a critical role in fluid and electrolyte homeostasis. Recent studies have shown that these channels interact via PY motifs in the C terminals of their α, β, and γ subunits with the WW domains of the ubiquitin-protein ligase Nedd4. Mutation or deletion of these PY motifs (as occurs, for example, in the heritable form of hypertension known as Liddle’s syndrome) leads to increased Na+ channel activity. Thus, binding of Nedd4 by the PY motifs would appear to be part of a physiological control system for down-regulation of Na+ channel activity. The nature of this control system is, however, unknown. In the present paper, we show that Nedd4 mediates the ubiquitin-dependent down-regulation of Na+ channel activity in response to increased intracellular Na+. We further show that Nedd4 operates downstream of Go in this feedback pathway. We find, however, that Nedd4 is not involved in the feedback control of Na+ channels by intracellular anions. Finally, we show that Nedd4 has no influence on Na+ channel activity when the Na+ and anion feedback systems are inactive. We conclude that Nedd4 normally mediates feedback control of epithelial Na+ channels by intracellular Na+, and we suggest that the increased Na+ channel activity observed in Liddle’s syndrome is attributable to the loss of this regulatory feedback system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We are studying the intracellular trafficking of the multispanning membrane protein Ste6p, the a-factor transporter in Saccharomyces cerevisiae and a member of the ATP-binding cassette superfamily of proteins. In the present study, we have used Ste6p as model for studying the process of endoplasmic reticulum (ER) quality control, about which relatively little is known in yeast. We have identified three mutant forms of Ste6p that are aberrantly ER retained, as determined by immunofluorescence and subcellular fractionation. By pulse-chase metabolic labeling, we demonstrate that these mutants define two distinct classes. The single member of Class I, Ste6–166p, is highly unstable. We show that its degradation involves the ubiquitin–proteasome system, as indicated by its in vivo stabilization in certain ubiquitin–proteasome mutants or when cells are treated with the proteasome inhibitor drug MG132. The two Class II mutant proteins, Ste6–13p and Ste6–90p, are hyperstable relative to wild-type Ste6p and accumulate in the ER membrane. This represents the first report of a single protein in yeast for which distinct mutant forms can be channeled to different outcomes by the ER quality control system. We propose that these two classes of ER-retained Ste6p mutants may define distinct checkpoint steps in a linear pathway of ER quality control in yeast. In addition, a screen for high-copy suppressors of the mating defect of one of the ER-retained ste6 mutants has identified a proteasome subunit, Hrd2p/p97, previously implicated in the regulated degradation of wild-type hydroxymethylglutaryl-CoA reductase in the ER membrane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Unlike properly folded and assembled proteins, most misfolded and incompletely assembled proteins are retained in the endoplasmic reticulum of mammalian cells and degraded without transport to the Golgi complex. To analyze the mechanisms underlying this unique sorting process and its fidelity, the fate of C-terminally truncated fragments of influenza hemagglutinin was determined. An assortment of different fragments was generated by adding puromycin at low concentrations to influenza virus-infected tissue culture cells. Of the fragments generated, <2% was secreted, indicating that the system for detecting defects in newly synthesized proteins is quite stringent. The majority of secreted species corresponded to folding domains within the viral spike glycoprotein. The retained fragments acquired a partially folded structure with intrachain disulfide bonds and conformation-dependent antigenic epitopes. They associated with two lectin-like endoplasmic reticulum chaperones (calnexin and calreticulin) but not BiP/GRP78. Inhibition of the association with calnexin and calreticulin by the addition of castanospermine significantly increased fragment secretion. However, it also caused association with BiP/GRP78. These results indicated that the association with calnexin and calreticulin was involved in retaining the fragments. They also suggested that BiP/GRP78 could serve as a backup for calnexin and calreticulin in retaining the fragments. In summary, the results showed that the quality control system in the secretory pathway was efficient and sensitive to folding defects, and that it involved multiple interactions with endoplasmic reticulum chaperones.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The song system of birds consists of several neural pathways. One of these, the anterior forebrain pathway, is necessary for the acquisition but not for the production of learned song in zebra finches. It has been shown that the anterior forebrain pathway sequentially connects the following nuclei: the high vocal center, area X of lobus parolfactorius, the medial portion of the dorsolateral thalamic nucleus, the lateral magnocellular nucleus of anterior neostriatum (IMAN), and the robust nucleus of the archistriatum (RA). We now show in zebra finches (Taeniopygia guttata) that IMAN cells that project to RA also project to area X, forming a feedback loop within the anterior forebrain pathway. The axonal endings of the IMAN projection into area X form cohesive and distinct domains. Small injections of tracer in subregions of area X backfill a spatially restricted subset of cells in IMAN, that, in turn, send projections to RA that are arranged in horizontal layers, which may correspond to the functional representation of vocal tract muscles demonstrated by others. We infer from our data that there is a myotopic representation throughout the anterior forebrain pathway. In addition, we suggest that the parcellation of area X into smaller domains by the projection from IMAN highlights a functional architecture within X, which might correspond to units of motor control, to the representation of acoustic features of song, or both.