3 resultados para Motor Ability

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cellular slime mold Dictyostelium discoideum is an attractive system for studying the roles of microtubule-based motility in cell development and differentiation. In this work, we report the first molecular characterization of kinesin-related proteins (KRPs) in Dictyostelium. A PCR-based strategy was used to isolate DNA fragments encoding six KRPs, several of which are induced during the developmental program that is initiated by starvation. The complete sequence of one such developmentally regulated KRP (designated K7) was determined and found to be a novel member of the kinesin superfamily. The motor domain of K7 is most similar to that of conventional kinesin, but unlike conventional kinesin, K7 is not predicted to have an extensive α-helical coiled-coil domain. The nonmotor domain is unusual and is rich in Asn, Gln, and Thr residues; similar sequences are found in other developmentally regulated genes in Dictyostelium. K7, expressed in Escherichia coli, supports plus end–directed microtubule motility in vitro at a speed of 0.14 μm/s, indicating that it is a bona fide motor protein. The K7 motor is found only in developing cells and reaches a peak level of expression between 12 and 16 h after starvation. By immunofluorescence microscopy, K7 localizes to a membranous perinuclear structure. To examine K7 function, we prepared a null cell line but found that these cells show no gross developmental abnormalities. However, when cultivated in the presence of wild-type cells, the K7-null cells are mostly absent from the prestalk zone of the slug. This result suggests that in a population composed largely of wild-type cells, the absence of the K7 motor protein interferes either with the ability of the cells to localize to the prestalk zone or to differentiate into prestalk cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hypothesis that age-associated impairment of cognitive and motor functions is due to oxidative molecular damage was tested in the mouse. In a blind study, senescent mice (aged 22 months) were subjected to a battery of behavioral tests for motor and cognitive functions and subsequently assayed for oxidative molecular damage as assessed by protein carbonyl concentration in different regions of the brain. The degree of age-related impairment in each mouse was determined by comparison to a reference group of young mice (aged 4 months) tested concurrently on the behavioral battery. The age-related loss of ability to perform a spatial swim maze task was found to be positively correlated with oxidative molecular damage in the cerebral cortex, whereas age-related loss of motor coordination was correlated with oxidative molecular damage within the cerebellum. These results support the view that oxidative stress is a causal factor in brain senescence. Furthermore, the findings suggest that age-related declines of cognitive and motor performance progress independently, and involve oxidative molecular damage within different regions of the brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated how human subjects adapt to forces perturbing the motion of their ams. We found that this kind of learning is based on the capacity of the central nervous system (CNS) to predict and therefore to cancel externally applied perturbing forces. Our experimental results indicate: (i) that the ability of the CNS to compensate for the perturbing forces is restricted to those spatial locations where the perturbations have been experienced by the moving arm. The subjects also are able to compensate for forces experienced at neighboring workspace locations. However, adaptation decays smoothly and quickly with distance from the locations where disturbances had been sensed by the moving limb. (ii) Our experiments also how that the CNS builds an internal model of the external perturbing forces in intrinsic (muscles and / or joints) coordinates.