11 resultados para Molecular weight hyaluronan
em National Center for Biotechnology Information - NCBI
Resumo:
An extensive repertoire of protein 4.1R isoforms is predominantly generated by alternative pre-mRNA splicing and differential usage of two translation initiation sites. The usage of the most upstream ATG (ATG-1) generates isoforms containing N-terminal extensions of up to 209 aa compared with those translated from the downstream ATG (ATG-2). To characterize nonerythroid 4.1R proteins translated from ATG-1 and analyze their intracellular localization, we cloned 4.1R cDNAs containing this translation initiation site. Six different clones were isolated from the nucleated human MOLT-4 T-cell line by reverse transcriptase–PCR techniques. Transient expression of the six ATG-1-translated 4.1R isoforms tagged with a c-Myc epitope revealed that all of them predominantly distributed to the plasma membrane and the endoplasmic reticulum. Staining of MOLT-4 cell plasma membranes but not nuclei was also observed by immunofluorescence microscopy by using an antibody specific to the N-terminal extension. Consistent with this, the antibody reacted with a major endogenous protein of ≈145 kDa present in nonnuclear but absent from nuclear fractions prepared from MOLT-4 cells. Because these data suggested that ATG-1-translated 4.1R isoforms were predominantly excluded from the nucleus, we fused the 209-aa domain to nuclear 4.1R isoforms encoded from ATG-2 and observed that this domain inhibited their nuclear targeting. All these results indicate that the N-terminal domain of ATG-1-translated 4.1R isoforms plays a pivotal role in differential targeting of proteins 4.1R.
Resumo:
Succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti, is composed of polymerized octasaccharide subunits, each of which consists of one galactose and seven glucoses with succinyl, acetyl, and pyruvyl modifications. Production of specific low molecular weight forms of R. meliloti exported and surface polysaccharides, including succinoglycan, appears to be important for nodule invasion. In a previous study of the roles of the various exo gene products in succinoglycan biosynthesis, exoP, exoQ, and exoT mutants were found to synthesize undecaprenol-linked fully modified succinoglycan octasaccharide subunits, suggesting possible roles for their gene products in polymerization or transport. Using improved techniques for analyzing succinoglycan biosynthesis by these mutants, we have obtained evidence indicating that R. meliloti has genetically separable systems for the synthesis of high molecular weight succinoglycan and the synthesis of a specific class of low molecular weight oligosaccharides consisting of dimers and trimers of the octasaccharide subunit. Models to account for our unexpected findings are discussed. Possible roles for the ExoP, ExoQ, and ExoT proteins are compared and contrasted with roles that have been suggested on the basis of homologies to key proteins involved in the biosynthesis of O-antigens and of certain exported or capsular cell surface polysaccharides.
Resumo:
Heparin has been used as a clinical anticoagulant for more than 50 years, making it one of the most effective pharmacological agents known. Much of heparin's activity can be traced to its ability to bind antithrombin III (AT-III). Low molecular weight heparin (LMWH), derived from heparin by its controlled breakdown, maintains much of the antithrombotic activity of heparin without many of the serious side effects. The clinical significance of LMWH has highlighted the need to understand and develop chemical or enzymatic means to generate it. The primary enzymatic tools used for the production of LMWH are the heparinases from Flavobacterium heparinum, specifically heparinases I and II. Using pentasaccharide and hexasaccharide model compounds, we show that heparinases I and II, but not heparinase III, cleave the AT-III binding site, leaving only a partially intact site. Furthermore, we show herein that glucosamine 3-O sulfation at the reducing end of a glycosidic linkage imparts resistance to heparinase I, II, and III cleavage. Finally, we examine the biological and pharmacological consequences of a heparin oligosaccharide that contains only a partial AT-III binding site. We show that such an oligosaccharide lacks some of the functional attributes of heparin- and heparan sulfate-like glycosaminoglycans containing an intact AT-III site.
Resumo:
Both high- and low-molecular-weight glutenin subunits (LMW-GS) play the major role in determining the viscoelastic properties of wheat (Triticum aestivum L.) flour. To date there has been no clear correspondence between the amino acid sequences of LMW-GS derived from DNA sequencing and those of actual LMW-GS present in the endosperm. We have characterized a particular LMW-GS from hexaploid bread wheat, a major component of the glutenin polymer, which we call the 42K LMW-GS, and have isolated and sequenced the putative corresponding gene. Extensive amino acid sequences obtained directly for this 42K LMW-GS indicate correspondence between this protein and the putative corresponding gene. This subunit did not show a cysteine (Cys) at position 5, in contrast to what has frequently been reported for nucleotide-based sequences of LMW-GS. This Cys has been replaced by one occurring in the repeated-sequence domain, leaving the total number of Cys residues in the molecule the same as in various other LMW-GS. On the basis of the deduced amino acid sequence and literature-based assignment of disulfide linkages, a computer-generated molecular model of the 42K subunit was constructed.
Resumo:
In animal cell lysates the multiprotein heat-shock protein 90 (hsp90)-based chaperone complexes consist of hsp70, hsp40, and p60. These complexes act to convert steroid hormone receptors to their steroid-binding state by assembling them into heterocomplexes with hsp90, p23, and one of several immunophilins. Wheat germ lysate also contains a hsp90-based chaperone system that can assemble the glucocorticoid receptor into a functional heterocomplex with hsp90. However, only two components of the heterocomplex-assembly system, hsp90 and hsp70, have thus far been identified. Recently, purified mammalian p23 preadsorbed with JJ3 antibody-protein A-Sepharose pellets was used to isolate a mammalian p23-wheat hsp90 heterocomplex from wheat germ lysate (J.K. Owens-Grillo, L.F. Stancato, K. Hoffmann, W.B. Pratt, and P. Krishna [1996] Biochemistry 35: 15249–15255). This heterocomplex was found to contain an immunophilin(s) of the FK506-binding class, as judged by binding of the radiolabeled immunosuppressant drug [3H]FK506 to the immune pellets in a specific manner. In the present study we identified the immunophilin components of this heterocomplex as FKBP73 and FKBP77, the two recently described high-molecular-weight FKBPs of wheat. In addition, we present evidence that the two FKBPs bind hsp90 via tetratricopeptide repeat domains. Our results demonstrate that binding of immunophilins to hsp90 via tetratricopeptide repeat domains is a conserved protein interaction in plants. Conservation of this protein-to-protein interaction in both plant and animal cells suggests that it is important for the biological action of the high-molecular-weight immunophilins.
Resumo:
Phospholipase A2 (PLA2) was purified about 180,000 times compared with the starting soluble-protein extract from developing elm (Ulmus glabra) seeds. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified fraction showed a single protein band with a mobility that corresponded to 15 kD, from which activity could be recovered. When analyzed by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry, the enzyme had a deduced mass of 13,900 D. A 53-amino acid-long N-terminal sequence was determined and aligned with other sequences, giving 62% identity to the deduced amino acid sequence of some rice (Oryza sativa) expressed sequence tag clones. The purified enzyme had an alkaline pH optimum and required Ca2+ for activity. It was unusually stable with regard to heat, acidity, and organic solvents but was sensitive to disulfide bond-reducing agents. The enzyme is a true PLA2, neither hydrolyzing the sn-1 position of phosphatidylcholine nor having any activity toward lysophosphatidylcholine or diacylglycerol. The biochemical data and amino acid sequence alignments indicate that the enzyme is related to the well-characterized family of animal secretory PLA2s and, to our knowledge, is the first plant enzyme of this type to be described.
Resumo:
In conjunction with an enhanced system for Agrobacterium-mediated plant transformation, a new binary bacterial artificial chromosome (BIBAC) vector has been developed that is capable of transferring at least 150 kb of foreign DNA into a plant nuclear genome. The transferred DNA appears to be intact in the majority of transformed tobacco plants analyzed and is faithfully inherited in the progeny. The ability to introduce high molecular weight DNA into plant chromosomes should accelerate gene identification and genetic engineering of plants and may lead to new approaches in studies of genome organization.
Resumo:
High molecular weight kininogen (HK) and factor XII are known to bind to human umbilical vein endothelial cells (HUVEC) in a zinc-dependent and saturable manner indicating that HUVEC express specific binding site(s) for those proteins. However, identification and immunochemical characterization of the putative receptor site(s) has not been previously accomplished. In this report, we have identified a cell surface glycoprotein that is a likely candidate for the HK binding site on HUVECs. When solubilized HUVEC membranes were subjected to an HK-affinity column in the presence or absence of 50 microM ZnCl2 and the bound membrane proteins eluted, a single major protein peak was obtained only in the presence of zinc. SDS/PAGE analysis and silver staining of the protein peak revealed this protein to be 33 kDa and partial sequence analysis matched the NH2 terminus of gC1q-R, a membrane glycoprotein that binds to the globular "heads" of C1q. Two other minor proteins of approximately 70 kDa and 45 kDa were also obtained. Upon analysis by Western blotting, the 33-kDa band was found to react with several monoclonal antibodies (mAbs) recognizing different epitopes on gC1q-R. Ligand and dot blot analyses revealed zinc-dependent binding of biotinylated HK as well as biotinylated factor XII to the isolated 33-kDa HUVEC molecule as well as recombinant gC1q-R. In addition, binding of 125I-HK to HUVEC cells was inhibited by selected monoclonal anti-gC1q-R antibodies. C1q, however, did not inhibit 125I-HK binding to HUVEC nor did those monoclonals known to inhibit C1q binding to gC1q-R. Taken together, the data suggest that HK (and factor XII) bind to HUVECs via a 33-kDa cell surface glycoprotein that appears to be identical to gC1q-R but interact with a site on gC1q-R distinct from that which binds C1q.
Resumo:
Effective invasion of alfalfa by Rhizobium meliloti Rm1021 normally requires the presence of succinoglycan, an exopolysaccharide (EPS) produced by the bacterium. However, Rm1021 has the ability to produce a second EPS (EPS II) that can suppress the symbiotic defects of succinoglycan-deficient strains. EPS II is a polymer of modified glucose-(beta-1,3)-galactose subunits and is produced by Rm1021 derivatives carrying either an expR101 or mucR mutation. If the ability to synthesize succinoglycan is blocked genetically, expR101 derivatives of Rm1021 are nodulation-proficient, whereas mucR derivatives of Rm1021 are not. The difference in nodulation proficiency between these two classes of EPS II-producing strains is due to the specific production of a low molecular weight form of EPS II by expR101 strains. A low molecular weight EPS II fraction consisting of 15-20 EPS II disaccharide subunits efficiently allows nodule invasion by noninfective strains when present in amounts as low as 7 pmol per plant, suggesting that low molecular weight EPS II may act as a symbiotic signal during infection.
Resumo:
All immunoglobulins and T-cell receptors throughout phylogeny share regions of highly conserved amino acid sequence. To identify possible primitive immunoglobulins and immunoglobulin-like molecules, we utilized 3' RACE (rapid amplification of cDNA ends) and a highly conserved constant region consensus amino acid sequence to isolate a new immunoglobulin class from the sandbar shark Carcharhinus plumbeus. The immunoglobulin, termed IgW, in its secreted form consists of 782 amino acids and is expressed in both the thymus and the spleen. The molecule overall most closely resembles mu chains of the skate and human and a new putative antigen binding molecule isolated from the nurse shark (NAR). The full-length IgW chain has a variable region resembling human and shark heavy-chain (VH) sequences and a novel joining segment containing the WGXGT motif characteristic of H chains. However, unlike any other H-chain-type molecule, it contains six constant (C) domains. The first C domain contains the cysteine residue characteristic of C mu1 that would allow dimerization with a light (L) chain. The fourth and sixth domains also contain comparable cysteines that would enable dimerization with other H chains or homodimerization. Comparison of the sequences of IgW V and C domains shows homology greater than that found in comparisons among VH and C mu or VL, or CL thereby suggesting that IgW may retain features of the primordial immunoglobulin in evolution.