5 resultados para Molecular Theory

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We develop a unifying theory of hypoxia tolerance based on information from two cell level models (brain cortical cells and isolated hepatocytes) from the highly anoxia tolerant aquatic turtle and from other more hypoxia sensitive systems. We propose that the response of hypoxia tolerant systems to oxygen lack occurs in two phases (defense and rescue). The first lines of defense against hypoxia include a balanced suppression of ATP-demand and ATP-supply pathways; this regulation stabilizes (adenylates) at new steady-state levels even while ATP turnover rates greatly decline. The ATP demands of ion pumping are down-regulated by generalized "channel" arrest in hepatocytes and by "spike" arrest in neurons. Hypoxic ATP demands of protein synthesis are down-regulated probably by translational arrest. In hypoxia sensitive cells this translational arrest seems irreversible, but hypoxia-tolerant systems activate "rescue" mechanisms if the period of oxygen lack is extended by preferentially regulating the expression of several proteins. In these cells, a cascade of processes underpinning hypoxia rescue and defense begins with an oxygen sensor (a heme protein) and a signal-transduction pathway, which leads to significant gene-based metabolic reprogramming-the rescue process-with maintained down-regulation of energy-demand and energy-supply pathways in metabolism throughout the hypoxic period. This recent work begins to clarify how normoxic maintenance ATP turnover rates can be drastically (10-fold) down-regulated to a new hypometabolic steady state, which is prerequisite for surviving prolonged hypoxia or anoxia. The implications of these developments are extensive in biology and medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this communication, we report our femtosecond real-time observation of the dynamics for the three didehydrobenzene molecules (p-, m-, and o-benzyne) generated from 1,4-, 1,3-, and 1,2-dibromobenzene, respectively, in a molecular beam, by using femtosecond time-resolved mass spectrometry. The time required for the first and the second C-Br bond breakage is less than 100 fs; the benzyne molecules are produced within 100 fs and then decay with a lifetime of 400 ps or more. Density functional theory and high-level ab initio calculations are also reported herein to elucidate the energetics along the reaction path. We discuss the dynamics and possible reaction mechanisms for the disappearance of benzyne intermediates. Our effort focuses on the isolated molecule dynamics of the three isomers on the femtosecond time scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most large dynamical systems are thought to have ergodic dynamics, whereas small systems may not have free interchange of energy between degrees of freedom. This assumption is made in many areas of chemistry and physics, ranging from nuclei to reacting molecules and on to quantum dots. We examine the transition to facile vibrational energy flow in a large set of organic molecules as molecular size is increased. Both analytical and computational results based on local random matrix models describe the transition to unrestricted vibrational energy flow in these molecules. In particular, the models connect the number of states participating in intramolecular energy flow to simple molecular properties such as the molecular size and the distribution of vibrational frequencies. The transition itself is governed by a local anharmonic coupling strength and a local state density. The theoretical results for the transition characteristics compare well with those implied by experimental measurements using IR fluorescence spectroscopy of dilution factors reported by Stewart and McDonald [Stewart, G. M. & McDonald, J. D. (1983) J. Chem. Phys. 78, 3907–3915].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RNA viruses evolve rapidly. One source of this ability to rapidly change is the apparently high mutation frequency in RNA virus populations. A high mutation frequency is a central tenet of the quasispecies theory. A corollary of the quasispecies theory postulates that, given their high mutation frequency, animal RNA viruses may be susceptible to error catastrophe, where they undergo a sharp drop in viability after a modest increase in mutation frequency. We recently showed that the important broad-spectrum antiviral drug ribavirin (currently used to treat hepatitis C virus infections, among others) is an RNA virus mutagen, and we proposed that ribavirin's antiviral effect is by forcing RNA viruses into error catastrophe. However, a direct demonstration of error catastrophe has not been made for ribavirin or any RNA virus mutagen. Here we describe a direct demonstration of error catastrophe by using ribavirin as the mutagen and poliovirus as a model RNA virus. We demonstrate that ribavirin's antiviral activity is exerted directly through lethal mutagenesis of the viral genetic material. A 99.3% loss in viral genome infectivity is observed after a single round of virus infection in ribavirin concentrations sufficient to cause a 9.7-fold increase in mutagenesis. Compiling data on both the mutation levels and the specific infectivities of poliovirus genomes produced in the presence of ribavirin, we have constructed a graph of error catastrophe showing that normal poliovirus indeed exists at the edge of viability. These data suggest that RNA virus mutagens may represent a promising new class of antiviral drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A molecular model of poorly understood hydrophobic effects is heuristically developed using the methods of information theory. Because primitive hydrophobic effects can be tied to the probability of observing a molecular-sized cavity in the solvent, the probability distribution of the number of solvent centers in a cavity volume is modeled on the basis of the two moments available from the density and radial distribution of oxygen atoms in liquid water. The modeled distribution then yields the probability that no solvent centers are found in the cavity volume. This model is shown to account quantitatively for the central hydrophobic phenomena of cavity formation and association of inert gas solutes. The connection of information theory to statistical thermodynamics provides a basis for clarification of hydrophobic effects. The simplicity and flexibility of the approach suggest that it should permit applications to conformational equilibria of nonpolar solutes and hydrophobic residues in biopolymers.