5 resultados para Molds
em National Center for Biotechnology Information - NCBI
Resumo:
The Mycetozoa include the cellular (dictyostelid), acellular (myxogastrid), and protostelid slime molds. However, available molecular data are in disagreement on both the monophyly and phylogenetic position of the group. Ribosomal RNA trees show the myxogastrid and dictyostelid slime molds as unrelated early branching lineages, but actin and β-tubulin trees place them together as a single coherent (monophyletic) group, closely related to the animal–fungal clade. We have sequenced the elongation factor-1α genes from one member of each division of the Mycetozoa, including Dictyostelium discoideum, for which cDNA sequences were previously available. Phylogenetic analyses of these sequences strongly support a monophyletic Mycetozoa, with the myxogastrid and dictyostelid slime molds most closely related to each other. All phylogenetic methods used also place this coherent Mycetozoan assemblage as emerging among the multicellular eukaryotes, tentatively supported as more closely related to animals + fungi than are green plants. With our data there are now three proteins that consistently support a monophyletic Mycetozoa and at least four that place these taxa within the “crown” of the eukaryote tree. We suggest that ribosomal RNA data should be more closely examined with regard to these questions, and we emphasize the importance of developing multiple sequence data sets.
Resumo:
We have found a predator-prey association between the social amoeba Dictyostelium discoideum and the free soil living nematode Caenorhabditis elegans. C. elegans feeds on the amoebae and multiplies indefinitely when amoebae are the sole food source. In an environment created from soil, D. discoideum grows and develops, but not in the presence of C. elegans. During development, C. elegans feeds on amoebae until they aggregate and synthesize an extracellular matrix called the slime sheath. After the sheath forms, the aggregate and slug are protected. Adult nematodes ingest Dictyostelium spores, which pass through the gut of the worm without loss of structure and remain viable. Nematodes kill the amoebae but disperse the spores. The sheath that is constructed when the social amoebae aggregate and the spore coats of the individual cells may protect against this predator. Individual amoebae may also protect themselves by secreting compounds that repel nematodes.
Resumo:
Two-component histidine kinases recently have been found in eukaryotic organisms including fungi, slime molds, and plants. We describe the identification of a gene, COS1, from the opportunistic pathogen Candida albicans by using a PCR-based screening strategy. The sequence of COS1 indicates that it encodes a homolog of the histidine kinase Nik-1 from the filamentous fungus Neurospora crassa. COS1 is also identical to a gene called CaNIK1 identified in C. albicans by low stringency hybridization using CaSLN1 as a probe [Nagahashi, S., Mio, T., Yamada-Okabe, T., Arisawa, M., Bussey, H. & Yamada-Okabe, H. (1998) Microbiol. 44, 425–432]. We assess the function of COS1/CaNIK1 by constructing a diploid deletion mutant. Mutants lacking both copies of COS1 appear normal when grown as yeast cells; however, they exhibit defective hyphal formation when placed on solid agar media, either in response to nutrient deprivation or serum. In constrast to the Δnik-1 mutant, the Δcos1/Δcos1 mutant does not demonstrate deleterious effects when grown in media of high osmolarity; however both Δnik-1 and Δcos1/Δcos1 mutants show defective hyphal formation. Thus, as predicted for Nik-1, Cos1p may be involved in some aspect of hyphal morphogenesis and may play a role in virulence properties of the organism.
Resumo:
This paper describes a method based on experimentally simple techniques--microcontact printing and micromolding in capillaries--to prepare tissue culture substrates in which both the topology and molecular structure of the interface can be controlled. The method combines optically transparent contoured surfaces with self-assembled monolayers (SAMs) of alkanethiolates on gold to control interfacial characteristics; these tailored interfaces, in turn, control the adsorption of proteins and the attachment of cells. The technique uses replica molding in poly(dimethylsiloxane) molds having micrometer-scale relief patterns on their surfaces to form a contoured film of polyurethane supported on a glass slide. Evaporation of a thin (< 12 nm) film of gold on this surface-contoured polyurethane provides an optically transparent substrate, on which SAMs of terminally functionalized alkanethiolates can be formed. In one procedure, a flat poly(dimethylsiloxane) stamp was used to form a SAM of hexadecanethiolate on the raised plateaus of the contoured surface by contact printing hexadecanethiol [HS(CH2)15CH3]; a SAM terminated in tri(ethylene glycol) groups was subsequently formed on the bare gold remaining in the grooves by immersing the substrate in a solution of a second alkanethiol [HS(CH2)11(OCH2CH2)3OH]. Then this patterned substrate was immersed in a solution of fibronectin, the protein adsorbed only on the methyl-terminated plateau regions of the substrate [the tri(ethylene glycol)-terminated regions resisted the adsorption of protein]; bovine capillary endothelial cells attached only on the regions that adsorbed fibronectin. A complementary procedure confined protein adsorption and cell attachment to the grooves in this substrate.