35 resultados para Modification of the body

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During meiosis II in the yeast Saccharomyces cerevisiae, the cytoplasmic face of the spindle pole body changes from a site of microtubule initiation to a site of de novo membrane formation. These membranes are required to package the haploid meiotic products into spores. This functional change in the spindle pole body involves the expansion and modification of its cytoplasmic face, termed the outer plaque. We report here that SPO21 is required for this modification. The Spo21 protein localizes to the spindle pole in meiotic cells. In the absence of SPO21 the structure of the outer plaque is abnormal, and prospore membranes do not form. Further, decreased dosage of SPO21 leaves only two of the four spindle pole bodies competent to generate membranes. Mutation of CNM67, encoding a known component of the mitotic outer plaque, also results in a meiotic outer plaque defect but does not block membrane formation, suggesting that Spo21p may play a direct role in initiating membrane formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Posttranslational modifications such as ubiquitination and phosphorylation play an important role in the regulation of cellular protein function. Homeodomain-interacting protein kinase 2 (HIPK2) is a member of the recently identified family of nuclear protein kinases that act as corepressors for homeodomain transcription factors. Here, we show that HIPK2 is regulated by a ubiquitin-like protein, SUMO-1. We demonstrate that HIPK2 localizes to nuclear speckles (dots) by means of a speckle-retention signal. This speckle-retention signal contains a domain that interacts with a mouse ubiquitin-like protein conjugating (E2) enzyme, mUBC9. In cultured cells, HIPK2 is covalently modified by SUMO-1, and the SUMO-1 modification of HIPK2 correlates with its localization to nuclear speckles (dots). Thus, our results provide firm evidence that the nuclear protein kinase HIPK2 can be covalently modified by SUMO-1, which directs its localization to nuclear speckles (dots).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viral proteins are not naturally selected for high affinity major histocompatibility complex (MHC) binding sequences; indeed, if there is any selection, it is likely to be negative in nature. Thus, one should be able to increase viral peptide binding to MHC in the rational design of synthetic peptide vaccines. The T1 helper peptide from the HIV-1 envelope protein was made more immunogenic for inducing T cell proliferation to the native sequence by replacing a residue that exerts an adverse influence on peptide binding to an MHC class II molecule. Mice immunized with vaccine constructs combining the more potent Th helper (Th) epitope with a cytotoxic T lymphocyte (CTL) determinant developed greatly enhanced CTL responses. Use of class II MHC-congenic mice confirmed that the enhancement of CTL response was due to class II-restricted help. Thus, enhanced T cell help is key for optimal induction of CTL, and, by modification of the native immunogen to increase binding to MHC, it is possible to develop second generation vaccine constructs that enhance both Th cell activation and CTL induction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycosylation inhibiting factor (GIF) and macrophage migration inhibitory factor (MIF) share an identical structure gene. Here we unravel two steps of posttranslational modifications in GIF/MIF molecules in human suppressor T (Ts) cell hybridomas. Peptide mapping and MS analysis of the affinity-purified GIF from the Ts cells revealed that one modification is cysteinylation at Cys-60, and the other is phosphorylation at Ser-91. Cysteinylated GIF, but not the wild-type GIF/MIF, possessed immunosuppressive effects on the in vitro IgE antibody response and had high affinity for GIF receptors on the T helper hybridoma cells. In vitro treatment of wild-type recombinant human GIF/MIF with cystine resulted in preferential cysteinylation of Cys-60 in the molecules. The cysteinylated recombinant human GIF and the Ts hybridoma-derived cysteinylated GIF were comparable both in the affinity for the receptors and in the immunosuppressive activity. Polyclonal antibodies specific for a stretch of the amino acid sequence in α2-helix of GIF bound bioactive cysteinylated GIF but failed to bind wild-type GIF/MIF. These results strongly suggest that cysteinylation of Cys-60 and consequent conformational changes in the GIF/MIF molecules are responsible for the generation of GIF bioactivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regional cerebral blood flow was measured with positron emission tomography in human subjects during the performance of a task requiring mental rotation of their hand and a perceptually equivalent control task that did not require such a process. Comparison of the distribution of cerebral activity between these conditions demonstrated significant blood flow increases in the superior parietal cortex, the intraparietal sulcus, and the adjacent rostralmost part of the inferior parietal lobule. These findings demonstrated that, in the human brain, there is a specific system of parietal areas that are involved in mental transformations of the body-in-space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plant acyl-acyl carrier protein (ACP) thioesterases (TEs) are of biochemical interest because of their roles in fatty acid synthesis and their utilities in the bioengineering of plant seed oils. When the FatB1 cDNA encoding a 12:0-ACP TE (Uc FatB1) from California bay, Umbellularia californica (Uc) was expressed in Escherichia coli and in developing oilseeds of the plants Arabidopsis thaliana and Brassica napus, large amounts of laurate (12:0) and small amounts of myristate (14:0) were accumulated. We have isolated a TE cDNA from camphor (Cinnamomum camphorum) (Cc) seeds that shares 92% amino acid identity with Uc FatB1. This TE, Cc FatB1, mainly hydrolyzes 14:0-ACP as shown by E. coli expression. We have investigated the roles of the N- and C-terminal regions in determining substrate specificity by constructing two chimeric enzymes, in which the N-terminal portion of one protein is fused to the C-terminal portion of the other. Our results show that the C-terminal two-thirds of the protein is critical for the specificity. By site-directed mutagenesis, we have replaced several amino acids in Uc FatB1 by using the Cc FatB1 sequence as a guide. A double mutant, which changes Met-197 to an Arg and Arg-199 to a His (M197R/R199H), turns Uc FatB1 into a 12:0/14:0 TE with equal preference for both substrates. Another mutation, T231K, by itself does not effect the specificity. However, when it is combined with the double mutant to generate a triple mutant (M197R/R199H/T231K), Uc FatB1 is converted to a 14:0-ACP TE. Expression of the double-mutant cDNA in E. coli K27, a strain deficient in fatty acid degradation, results in accumulation of similar amounts of 12:0 and 14:0. Meanwhile the E. coli expressing the triple-mutant cDNA produces predominantly 14:0 with very small amounts of 12:0. Kinetic studies indicate that both wild-type Uc FatB1 and the triple mutant have similar values of Km,app with respect to 14:0-ACP. Inhibitory studies also show that 12:0-ACP is a good competitive inhibitor with respect to 14:0-ACP in both the wild type and the triple mutant. These results imply that both 12:0- and 14:0-ACP can bind to the two proteins equally well, but in the case of the triple mutant, the hydrolysis of 12:0-ACP is severely impaired. The ability to modify TE specificity should allow the production of additional "designer oils" in genetically engineered plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of the rotational information of DNA in determining the in vitro localization of nucleosomal core particles (ncps) have been studied in the Saccharomyces cerevisiae 5S rRNA repeat gene. We have altered the distribution of the phased series of flexibility signals present on this DNA by inserting a 25-bp tract, and we have analyzed the effects of this mutation on the distribution and on the frequencies of ncps, as compared with the wild type and a reference 21-bp insertion mutant. The variation of the standard free energy of nucleosome reconstitution was determined. The results show that the DNA rotational information is a major determinant of ncps positioning, define how many rotationally phased signals are required for the formation of a stable particle, and teach how to modify their distribution through the alteration of the rotational signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies suggested that modification of the membrane contact site of vitamin K-dependent proteins may enhance the membrane affinity and function of members of this protein family. The properties of a factor VII mutant, factor VII-Q10E32, relative to wild-type factor VII (VII, containing P10K32), have been compared. Membrane affinity of VII-Q10E32 was about 20-fold higher than that of wild-type factor VII. The rate of autoactivation VII-Q10E32 with soluble tissue factor was 100-fold faster than wild-type VII and its rate of activation by factor Xa was 30 times greater than that of wild-type factor VII. When combined with soluble tissue factor and phospholipid, activated factor VII-Q10E32 displayed increased activation of factor X. Its coagulant activity was enhanced in all types of plasma and with all sources of tissue factor tested. This difference in activity (maximum 50-fold) was greatest when coagulation conditions were minimal, such as limiting levels of tissue factor and/or phospholipid. Because of its enhanced activity, factor VII-Q10E32 and its derivatives may provide important reagents for research and may be more effective in treatment of bleeding and/or clotting disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The het-s locus of Podospora anserina is a heterokaryon incompatibility locus. The coexpression of the antagonistic het-s and het-S alleles triggers a lethal reaction that prevents the formation of viable heterokaryons. Strains that contain the het-s allele can display two different phenotypes, [Het-s] or [Het-s*], according to their reactivity in incompatibility. The detection in these phenotypically distinct strains of a protein expressed from the het-s gene indicates that the difference in reactivity depends on a posttranslational difference between two forms of the polypeptide encoded by the het-s gene. This posttranslational modification does not affect the electrophoretic mobility of the protein in SDS/PAGE. Several results suggest a similarity of behavior between the protein encoded by the het-s gene and prions. The [Het-s] character can propagate in [Het-s*] strains as an infectious agent, producing a [Het-s*] → [Het-s] transition, independently of protein synthesis. Expression of the [Het-s] character requires a functional het-s gene. The protein present in [Het-s] strains is more resistant to proteinase K than that present in [Het-s*] mycelium. Furthermore, overexpression of the het-s gene increases the frequency of the transition from [Het-s*] to [Het-s]. We propose that this transition is the consequence of a self-propagating conformational modification of the protein mediated by the formation of complexes between the two different forms of the polypeptide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hereditary hemochromatosis (HH) is a common autosomal recessive disease associated with loss of regulation of dietary iron absorption and excessive iron deposition in major organs of the body. Recently, a candidate gene for HH (also called HFE) was identified that encodes a novel MHC class I-like protein. Most patients with HH are homozygous for the same mutation in the HFE gene, resulting in a C282Y change in the HFE protein. Studies in cultured cells show that the C282Y mutation abrogates the binding of the recombinant HFE protein to β2-microglobulin (β2M) and disrupts its transport to the cell surface. The HFE protein was shown by immunohistochemistry to be expressed in certain epithelial cells throughout the human alimentary tract and to have a unique localization in the cryptal cells of small intestine, where signals to regulate iron absorption are received from the body. In the studies presented here, we demonstrate by immunohistochemistry that the HFE protein is expressed in human placenta in the apical plasma membrane of the syncytiotrophoblasts, where the transferrin-bound iron is normally transported to the fetus via receptor-mediated endocytosis. Western blot analyses show that the HFE protein is associated with β2M in placental membranes. Unexpectedly, the transferrin receptor was also found to be associated with the HFE protein/β2M complex. These studies place the normal HFE protein at the site of contact with the maternal circulation where its association with transferrin receptor raises the possibility that the HFE protein plays some role in determining maternal/fetal iron homeostasis. These findings also raise the question of whether mutations in the HFE gene can disrupt this association and thereby contribute to some forms of neonatal iron overload.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

S-Nitrosothiols have generated considerable interest due to their ability to act as nitric oxide (NO) donors and due to their possible involvement in bioregulatory systems—e.g., NO transfer reactions. Elucidation of the reaction pathways involved in the modification of the thiol group by S-nitrosothiols is important for understanding the role of S-nitroso compounds in vivo. The modification of glutathione (GSH) in the presence of S-nitrosoglutathione (GSNO) was examined as a model reaction. Incubation of GSNO (1 mM) with GSH at various concentrations (1–10 mM) in phosphate buffer (pH 7.4) yielded oxidized glutathione, nitrite, nitrous oxide, and ammonia as end products. The product yields were dependent on the concentrations of GSH and oxygen. Transient signals corresponding to GSH conjugates, which increased by one mass unit when the reaction was carried out with 15N-labeled GSNO, were identified by electrospray ionization mass spectrometry. When morpholine was present in the reaction system, N-nitrosomorpholine was formed. Increasing concentrations of either phosphate or GSH led to lower yields of N-nitrosomorpholine. The inhibitory effect of phosphate may be due to reaction with the nitrosating agent, nitrous anhydride (N2O3), formed by oxidation of NO. This supports the release of NO during the reaction of GSNO with GSH. The products noted above account quantitatively for virtually all of the GSNO nitrogen consumed during the reaction, and it is now possible to construct a complete set of pathways for the complex transformations arising from GSNO + GSH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytochrome B (PhyB), one of the major photosensory chromoproteins in plants, mediates a variety of light-responsive developmental processes in a photoreversible manner. To analyze the structural requirements of the chromophore for the spectral properties of PhyB, we have designed and chemically synthesized 20 analogs of the linear tetrapyrrole (bilin) chromophore and reconstituted them with PhyB apoprotein (PHYB). The A-ring acts mainly as the anchor for ligation to PHYB, because the modification of the side chains at the C2 and C3 positions did not significantly influence the formation or difference spectra of adducts. In contrast, the side chains of the B- and C-rings are crucial to position the chromophore properly in the chromophore pocket of PHYB and for photoreversible spectral changes. The side-chain structure of the D-ring is required for the photoreversible spectral change of the adducts. When methyl and ethyl groups at the C17 and C18 positions are replaced with an n-propyl, n-pentyl, or n-octyl group, respectively, the photoreversible spectral change of the adducts depends on the length of the side chains. From these studies, we conclude that each pyrrole ring of the linear tetrapyrrole chromophore plays a different role in chromophore assembly and the photochromic properties of PhyB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interactions of sulfhydryl reagents with introduced cysteines in the pore-forming (Kir6.2) subunits of the KATP channel were examined. 2-Aminoethyl methanethiosulfonate (MTSEA+) failed to modify Cd2+-insensitive control-Kir6.2 channels, but rapidly and irreversibly modified Kir6.2[L164C] (L164C) channels. Although a single Cd2+ ion is coordinated by L164C, four MTSEA+ “hits” can occur, each sequentially reducing the single-channel current. A dimeric fusion of control-Kir6.2 and L164C subunits generates Cd2+-insensitive channels, confirming that at least three cysteines are required for coordination, but MTSEA+ modification of the dimer occurs in two hits. L164C channels were not modified by bromotrimethyl ammoniumbimane (qBBr+), even though qBBr+ caused voltage-dependent block (as opposed to modification) that was comparable to that of MTSEA+ or 3-(triethylammonium)propyl methanethiosulfonate (MTSPTrEA+), implying that qBBr+ can also enter the inner cavity but does not modify L164C residues. The Kir channel pore structure was modeled by homology with the KcsA crystal structure. A stable conformation optimally places the four L164C side chains for coordination of a single Cd2+ ion. Modification of these cysteines by up to four MTSEA+ (or three MTSPTrEA+, or two qBBr+) does not require widening of the cavity to accommodate the derivatives within it. However, like the KcsA crystal structure, the energy-minimized model shows a narrowing at the inner entrance, and in the Kir6.2 model this narrowing excludes all ions. To allow entry of ions as large as MTSPTrEA+ or qBBr+, the entrance must widen to >8 Å, but this widening is readily accomplished by minimal M2 helix motion and side-chain rearrangement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little is known about stem cell biology or the specialized environments or niches believed to control stem cell renewal and differentiation in self-renewing tissues of the body. Functional assays for stem cells are available only for hematopoiesis and spermatogenesis, and the microenvironment, or niche, for hematopoiesis is relatively inaccessible, making it difficult to analyze donor stem cell colonization events in recipients. In contrast, the recently developed spermatogonial stem cell assay system allows quantitation of individual colonization events, facilitating studies of stem cells and their associated microenvironment. By using this assay system, we found a 39-fold increase in male germ-line stem cells during development from birth to adult in the mouse. However, colony size or area of spermatogenesis generated by neonate and adult stem cells, 2–3 months after transplantation into adult tubules, was similar (∼0.5 mm2). In contrast, the microenvironment in the immature pup testis was 9.4 times better than adult testis in allowing colonization events, and the area colonized per donor stem cell, whether from adult or pup, was about 4.0 times larger in recipient pups than adults. These factors facilitated the restoration of fertility by donor stem cells transplanted to infertile pups. Thus, our results demonstrate that stem cells and their niches undergo dramatic changes in the postnatal testis, and the microenvironment of the pup testis provides a more hospitable environment for transplantation of male germ-line stem cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cuticle of the silkworm Bombyx mori was demonstrated to contain pro-phenol oxidase [zymogen of phenol oxidase (monophenol, L-dopa:oxygen oxidoreductase, EC 1.14.18.1)] and its activating cascade. The activating cascade contained at least one serine proteinase zymogen (latent form of pro-phenol oxidase activating enzyme). When the extracted cascade components were incubated with Ca2+, the latent form of pro-phenol oxidase activating enzyme was itself activated and, in turn, converted through a limited proteolysis of pro-phenol oxidase to phenol oxidase. Immuno-gold localization of prophenol oxidase in the cuticle using a cross-reactive hemolymph anti-pro-phenol oxidase antibody revealed a random distribution of this enzyme in the nonlamellate endocuticle and a specific orderly arrayed pattern along the basal border of the laminae in the lamellate endocuticle of the body wall. Furthermore, prophenol oxidase was randomly distributed in the taenidial cushion of the tracheal cuticle. At the time of pro-phenol oxidase accumulation in the body wall cuticle, no pro-phenol oxidase mRNA could be detected in the epidermal tissue, whereas free-circulating hemocytes contained numerous transcripts of pro-phenol oxidase. Our results suggest that the pro-phenol oxidase is synthesized in the hemocytes and actively transported into the cuticle via the epidermis.