3 resultados para Models and Performance Analysis

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss linear Ricardo models with a range of parameters. We show that the exact boundary of the region of equilibria of these models is obtained by solving a simple integer programming problem. We show that there is also an exact correspondence between many of the equilibria resulting from families of linear models and the multiple equilibria of economies of scale models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolutionary, pattern forming partial differential equations (PDEs) are often derived as limiting descriptions of microscopic, kinetic theory-based models of molecular processes (e.g., reaction and diffusion). The PDE dynamic behavior can be probed through direct simulation (time integration) or, more systematically, through stability/bifurcation calculations; time-stepper-based approaches, like the Recursive Projection Method [Shroff, G. M. & Keller, H. B. (1993) SIAM J. Numer. Anal. 30, 1099–1120] provide an attractive framework for the latter. We demonstrate an adaptation of this approach that allows for a direct, effective (“coarse”) bifurcation analysis of microscopic, kinetic-based models; this is illustrated through a comparative study of the FitzHugh-Nagumo PDE and of a corresponding Lattice–Boltzmann model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adenylyl and guanylyl cyclases catalyze the formation of 3′,5′-cyclic adenosine or guanosine monophosphate from the corresponding nucleoside 5′-triphosphate. The guanylyl cyclases, the mammalian adenylyl cyclases, and their microbial homologues function as pairs of homologous catalytic domains. The crystal structure of the rat type II adenylyl cyclase C2 catalytic domain was used to model by homology a mammalian adenylyl cyclase C1-C2 domain pair, a homodimeric adenylyl cyclase of Dictyostelium discoideum, a heterodimeric soluble guanylyl cyclase, and a homodimeric membrane guanylyl cyclase. Mg2+ATP or Mg2+GTP were docked into the active sites based on known stereochemical constraints on their conformation. The models are consistent with the activities of seven active-site mutants. Asp-310 and Glu-432 of type I adenylyl cyclase coordinate a Mg2+ ion. The D310S and D310A mutants have 10-fold reduced Vmax and altered [Mg2+] dependence. The NTP purine moieties bind in mostly hydrophobic pockets. Specificity is conferred by a Lys and an Asp in adenylyl cyclase, and a Glu, an Arg, and a Cys in guanylyl cyclase. The models predict that an Asp from one domain is a general base in the reaction, and that the transition state is stabilized by a conserved Asn-Arg pair on the other domain.