4 resultados para Modeling cycle

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A central event in the eukaryotic cell cycle is the decision to commence DNA replication (S phase). Strict controls normally operate to prevent repeated rounds of DNA replication without intervening mitoses (“endoreplication”) or initiation of mitosis before DNA is fully replicated (“mitotic catastrophe”). Some of the genetic interactions involved in these controls have recently been identified in yeast. From this evidence we propose a molecular mechanism of “Start” control in Schizosaccharomyces pombe. Using established principles of biochemical kinetics, we compare the properties of this model in detail with the observed behavior of various mutant strains of fission yeast: wee1− (size control at Start), cdc13Δ and rum1OP (endoreplication), and wee1− rum1Δ (rapid division cycles of diminishing cell size). We discuss essential features of the mechanism that are responsible for characteristic properties of Start control in fission yeast, to expose our proposal to crucial experimental tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate, by using mathematical modeling of cell division cycle (CDC) dynamics, a potential mechanism for precisely controlling the frequency of cell division and regulating the size of a dividing cell. Control of the cell cycle is achieved by artificially expressing a protein that reversibly binds and inactivates any one of the CDC proteins. In the simplest case, such as the checkpoint-free situation encountered in early amphibian embryos, the frequency of CDC oscillations can be increased or decreased by regulating the rate of synthesis, the binding rate, or the equilibrium constant of the binding protein. In a more complex model of cell division, where size-control checkpoints are included, we show that the same reversible binding reaction can alter the mean cell mass in a continuously dividing cell. Because this control scheme is general and requires only the expression of a single protein, it provides a practical means for tuning the characteristics of the cell cycle in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hair follicle cycle successively goes through the anagen, catagen, telogen, and latency phases, which correspond, respectively, to hair growth, arrest, shedding, and absence before a new anagen phase is initiated. Experimental observations collected over a period of 14 years in a group of 10 male volunteers, alopecic and nonalopecic, allowed us to determine the characteristics of scalp hair follicle cycles. On the basis of these observations, we propose a follicular automaton model to simulate the dynamics of human hair cycles. The automaton model is defined by a set of rules that govern the stochastic transitions of each follicle between the successive states anagen, telogen, and latency, and the subsequent return to anagen. The transitions occur independently for each follicle, after time intervals given stochastically by a distribution characterized by a mean and a variance. The follicular automaton model accounts both for the dynamical transitions observed in a single follicle and for the behavior of an ensemble of independently cycling follicles. Thus, the model successfully reproduces the evolution of the fractions of follicle populations in each of the three phases, which fluctuate around steady-state or slowly drifting values. We apply the follicular automaton model to the study of spatial patterns of follicular growth that result from a spatially heterogeneous distribution of parameters such as the mean duration of anagen phase. When considering that follicles die or miniaturize after going through a critical number of successive cycles, the model can reproduce the evolution to hair patterns similar to well known types of diffuse or androgenetic alopecia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Across the boreal forest of North America, lynx populations undergo 10-year cycles. Analysis of 21 time series from 1821 to the present demonstrates that these fluctuations are generated by nonlinear processes with regulatory delays. Trophic interactions between lynx and hares cause delayed density-dependent regulation of lynx population growth. The nonlinearity, in contrast, appears to arise from phase dependencies in hunting success by lynx through the cycle. Using a combined approach of empirical, statistical, and mathematical modeling, we highlight how shifts in trophic interactions between the lynx and the hare generate the nonlinear process primarily by shifting functional response curves during the increase and the decrease phases.