40 resultados para Model membrane

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A fluorinated detergent, CF3(CF2)5C2H4-O-maltose, was reconstituted into a lipid bilayer model membrane system to demonstrate the feasibility of determining solvent accessibility and membrane immersion depth of each fluorinated group by 19F NMR. Apolar oxygen, which is known to partition with an increasing concentration gradient toward the hydrophobic membrane interior, exhibits a range of paramagnetic relaxation effects on 19F nuclei, depending on its depth in the membrane. This effect, which is predominately associated with spin-lattice relaxation rates (R1) and chemical shifts, can be amplified greatly with minimal line broadening by increasing the partial pressure of O2 at least 100-fold (i.e., PO2 greater than 20 bar). The differences of longitudinal relaxation rates at 20 bar of oxygen pressure to those under ambient pressure (R120bar − R10) are largest for those fluorine groups expected to be most deeply buried in the membrane bilayer. This result contrasts with the reverse trend, which is observed on addition of a membrane surface-associated paramagnetic species, 4-(N,N-dimethyl-N-hexadecyl) ammonium-2,2,6,6-tetramethylpiperidine-1-oxyl iodide (CAT-16) at ambient pressures. Thus, differential relaxation rates may be observed in 19F-labeled membrane-associated molecules resulting from the addition of apolar oxygen under high pressure. The results demonstrate that the degree of solvent accessibility and membrane immersion depth of specific fluorinated species in membrane-associated macromolecules can be probed by 19F NMR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipophosphoglycan (LPG), the predominant molecule on the surface of the parasite Leishmania donovani, has previously been shown to be a potent inhibitor of protein kinase C (PKC) isolated from rat brain. The mechanism by which LPG inhibits PKC was further investigated in this study. LPG was found to inhibit the PKC alpha-catalyzed phosphorylation of histone in assays using large unilamellar vesicles composed of 1-palmitoyl, 2-oleoyl phosphatidylserine and 1-palmitoyl, 2-oleoyl phosphatidylcholine either with or without 1% 1,2 diolein added. The results also indicated that while PKC binding to sucrose-loaded vesicles was not substantially reduced in the presence of LPG at concentrations of 1-2%, the activity of membrane-bound PKC was inhibited by 70%. This inhibition of the membrane-bound form of PKC is not a consequence of reduced substrate availability to the membrane. However, Km shifted from approximately 31 +/- 4 microM to 105 +/- 26 microM in the presence of 5% LPG. LPG caused PKC to bind to membranes without inducing a conformational change as revealed by the lack of an increased susceptibility to trypsin. An LPG fragment containing only one repeating disaccharide unit was not as effective as the entire LPG molecule or of larger fragments in inhibiting the membrane-bound form of the enzyme. The shorter fragments were also less potent in raising the bilayer to hexagonal phase transition temperature of a model membrane. LPG is also able to inhibit the membrane-bound form of PKC alpha from the inner monolayer of large unilamellar vesicles, the opposite monolayer to which the enzyme binds in our assay. Inhibition is likely a result of alterations in the physical properties of the membrane. To our knowledge, this is the first example of a membrane additive that can inhibit the membrane-bound form of PKC in the presence of other lipid cofactors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Budding and vesiculation of erythrocyte membranes occurs by a process involving an uncoupling of the membrane skeleton from the lipid bilayer. Vesicle formation provides an important means whereby protein sorting and trafficking can occur. To understand the mechanism of sorting at the molecular level, we have developed a micropipette technique to quantify the redistribution of fluorescently labeled erythrocyte membrane components during mechanically induced membrane deformation and vesiculation. Our previous studies indicated that the spectrin-based membrane skeleton deforms elastically, producing a constant density gradient during deformation. Our current studies showed that during vesiculation the skeleton did not fragment but rather retracted to the cell body, resulting in a vesicle completely depleted of skeleton. These local changes in skeletal density regulated the sorting of nonskeletal membrane components. Highly mobile membrane components, phosphatidylethanolamine- and glycosylphosphatidylinositol-linked CD59 with no specific skeletal association were enriched in the vesicle. In contrast, two components with known specific skeletal association, band 3 and glycophorin A, were differentially depleted in vesicles. Increasing the skeletal association of glycophorin A by liganding its extrafacial domain reduced the fraction partitioning to the vesicle. We conclude that this technique of bilayer/skeleton uncoupling provides a means with which to study protein sorting driven by changes in local skeletal density. Moreover, it is the interaction of particular membrane components with the spectrin-based skeleton that determines molecular partitioning during protein sorting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The energetics of a fusion pathway is considered, starting from the contact site where two apposed membranes each locally protrude (as “nipples”) toward each other. The equilibrium distance between the tips of the two nipples is determined by a balance of physical forces: repulsion caused by hydration and attraction generated by fusion proteins. The energy to create the initial stalk, caused by bending of cis monolayer leaflets, is much less when the stalk forms between nipples rather than parallel flat membranes. The stalk cannot, however, expand by bending deformations alone, because this would necessitate the creation of a hydrophobic void of prohibitively high energy. But small movements of the lipids out of the plane of their monolayers allow transformation of the stalk into a modified stalk. This intermediate, not previously considered, is a low-energy structure that can reconfigure into a fusion pore via an additional intermediate, the prepore. The lipids of this latter structure are oriented as in a fusion pore, but the bilayer is locally compressed. All membrane rearrangements occur in a discrete local region without creation of an extended hemifusion diaphragm. Importantly, all steps of the proposed pathway are energetically feasible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Translocation of mitochondrial precursor proteins across the mitochondrial outer membrane is facilitated by the translocase of the outer membrane (TOM) complex. By using site-specific photocrosslinking, we have mapped interactions between TOM proteins and a mitochondrial precursor protein arrested at two distinct stages, stage A (accumulated at 0°C) and stage B (accumulated at 30°C), in the translocation across the outer membrane at high resolution not achieved previously. Although the stage A and stage B intermediates were assigned previously to the forms bound to the cis site and the trans site of the TOM complex, respectively, the results of crosslinking indicate that the presequence of the intermediates at both stage A and stage B is already on the trans side of the outer membrane. The mature domain is unfolded and bound to Tom40 at stage B whereas it remains folded at stage A. After dissociation from the TOM complex, translocation of the stage B intermediate, but not of the stage A intermediate, across the inner membrane was promoted by the intermembrane-space domain of Tom22. We propose a new model for protein translocation across the outer membrane, where translocation of the presequence and unfolding of the mature domain are not necessarily coupled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to elucidate the mechanism of membrane insertion and the structural organization of pores formed by Bacillus thuringiensis δ-endotoxin. We determined the relative affinities for membranes of peptides corresponding to the seven helices that compose the toxin pore-forming domain, their modes of membrane interaction, their structures within membranes, and their orientations relative to the membrane normal. In addition, we used resonance energy transfer measurements of all possible combinatorial pairs of membrane-bound helices to map the network of interactions between helices in their membrane-bound state. The interaction of the helices with the bilayer membrane was also probed by a Monte Carlo simulation protocol to determine lowest-energy orientations. Our results are consistent with a situation in which helices α4 and α5 insert into the membrane as a helical hairpin in an antiparallel manner, while the other helices lie on the membrane surface like the ribs of an umbrella (the “umbrella model”). Our results also support the suggestion that α7 may serve as a binding sensor to initiate the structural rearrangement of the pore-forming domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder with impaired β-oxidation of very long chain fatty acids (VLCFAs) and reduced function of peroxisomal very long chain fatty acyl-CoA synthetase (VLCS) that leads to severe and progressive neurological disability. The X-ALD gene, identified by positional cloning, encodes a peroxisomal membrane protein (adrenoleukodystrophy protein; ALDP) that belongs to the ATP binding cassette transporter protein superfamily. Mutational analyses and functional studies of the X-ALD gene confirm that it and not VLCS is the gene responsible for X-ALD. Its role in the β-oxidation of VLCFAs and its effect on the function of VLCS are unclear. The complex pathology of X-ALD and the extreme variability of its clinical phenotypes are also unexplained. To facilitate understanding of X-ALD pathophysiology, we developed an X-ALD mouse model by gene targeting. The X-ALD mouse exhibits reduced β-oxidation of VLCFAs, resulting in significantly elevated levels of saturated VLCFAs in total lipids from all tissues measured and in cholesterol esters from adrenal glands. Lipid cleft inclusions were observed in adrenocortical cells of X-ALD mice under the electron microscope. No neurological involvement has been detected in X-ALD mice up to 6 months. We conclude that X-ALD mice exhibit biochemical defects equivalent to those found in human X-ALD and thus provide an experimental system for testing therapeutic intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterotrimeric G proteins (peripheral proteins) conduct signals from membrane receptors (integral proteins) to regulatory proteins localized to various cellular compartments. They are in excess over any G protein-coupled receptor type on the cell membrane, which is necessary for signal amplification. These facts account for the large number of G protein molecules bound to membrane lipids. Thus, the protein-lipid interactions are crucial for their cellular localization, and consequently for signal transduction. In this work, the binding of G protein subunits to model membranes (liposomes), formed with defined membrane lipids, has been studied. It is shown that although G protein α-subunits were able to bind to lipid bilayers, the presence of nonlamellar-prone phospholipids (phosphatidylethanolamines) enhanced their binding to model membranes. This mechanism also appears to be used by other (structurally and functionally unrelated) peripheral proteins, such as protein kinase C and the insect protein apolipophorin III, indicating that it could constitute a general mode of protein-lipid interactions, relevant in the activity and translocation of some peripheral (amphitropic) proteins from soluble to particulate compartments. Other factors, such as the presence of cholesterol or the vesicle surface charge, also modulated the binding of the G protein subunits to lipid bilayers. Conversely, the binding of G protein-coupled receptor kinase 2 and the G protein β-subunit to liposomes was not increased by hexagonally prone lipids. Their distinct interactions with membrane lipids may, in part, explain the different cellular localizations of all of these proteins during the signaling process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phospholipids are the major components of cell membranes and are required for cellular growth. We studied membrane phosphatidylcholine (PtdCho) biosynthesis in neuronal cells undergoing neurite outgrowth, by using PC12 cells as a model system. When neurite outgrowth was induced by exposing PC12 cells to nerve growth factor for 2 and 4 days, the amounts of [14C]choline incorporated into [14C]phosphatidylcholine per cell (i.e., per DNA) increased approximately 5- and 10-fold, respectively, as compared with control cells, reflecting increases in the rate of PtdCho biosynthesis. [14C]choline uptake was not affected. Analysis of the three major PtdCho biosynthetic enzymes showed that the activity of CDPcholine:1,2-diacylglycerol cholinephosphotransferase was increased by approximately 50% after nerve growth factor treatment, but the activities of choline kinase or choline-phosphate cytidylyltransferase were unaltered; the cholinephosphotransferase displayed a high Km value (≈1,200 μM) for diacylglycerol. Moreover, free cellular diacylglycerol levels increased by approximately 1.5- and 4-fold on the second and fourth days, respectively. These data indicate that PtdCho biosynthesis is enhanced when PC12 cells sprout neurites, and the enhancement is mediated primarily by changes in cholinephosphotransferase activity and its saturation with diacylglycerol. This suggests a novel regulatory role for diacylglycerol in membrane phospholipid biosynthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vpu is an 81-residue membrane protein encoded by the HIV-1 genome. NMR experiments show that the protein folds into two distinct domains, a transmembrane hydrophobic helix and a cytoplasmic domain with two in-plane amphipathic α-helices separated by a linker region. Resonances in one-dimensional solid-state NMR spectra of uniformly 15N labeled Vpu are clearly segregated into two bands at chemical shift frequencies associated with NH bonds in a transmembrane α-helix, perpendicular to the membrane surface, and with NH bonds in the cytoplasmic helices parallel to the membrane surface. Solid-state NMR spectra of truncated Vpu2–51 (residues 2–51), which contains the transmembrane α-helix and the first amphipathic helix of the cytoplasmic domain, and of a construct Vpu28–81 (residues 28–81), which contains only the cytoplasmic domain, support this structural model of Vpu in the membrane. Full-length Vpu (residues 2–81) forms discrete ion-conducting channels of heterogeneous conductance in lipid bilayers. The most frequent conductances were 22 ± 3 pS and 12 ± 3 pS in 0.5 M KCl and 29 ± 3 pS and 12 ± 3 pS in 0.5 M NaCl. In agreement with the structural model, truncated Vpu2–51, which has the transmembrane helix, forms discrete channels in lipid bilayers, whereas the cytoplasmic domain Vpu28–81, which lacks the transmembrane helix, does not. This finding shows that the channel activity is associated with the transmembrane helical domain. The pattern of channel activity is characteristic of the self-assembly of conductive oligomers in the membrane and is compatible with the structural and functional findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Epstein–Barr virus latent membrane protein 1 (LMP1) is essential for the transformation of B lymphocytes into lymphoblastoid cell lines. Previous data are consistent with a model that LMP1 is a constitutively activated receptor that transduces signals for transformation through its carboxyl-terminal cytoplasmic tail. One transformation effector site (TES1), located within the membrane proximal 45 residues of the cytoplasmic tail, constitutively engages tumor necrosis factor receptor-associated factors. Signals from TES1 are sufficient to drive initial proliferation of infected resting B lymphocytes, but most lymphoblastoid cells infected with a virus that does not express the 155 residues beyond TES1 fail to grow as long-term cell lines. We now find that mutating two tyrosines to an isoleucine at the carboxyl end of the cytoplasmic tail cripples the ability of EBV to cause lymphoblastoid cell outgrowth, thereby marking a second transformation effector site, TES2. A yeast two-hybrid screen identified TES2 interacting proteins, including the tumor necrosis factor receptor-associated death domain protein (TRADD). TRADD was the only protein that interacted with wild-type TES2 and not with isoleucine-mutated TES2. TRADD associated with wild-type LMP1 but not with isoleucine-mutated LMP1 in mammalian cells, and TRADD constitutively associated with LMP1 in EBV-transformed cells. In transfection assays, TRADD and TES2 synergistically mediated high-level NF-κB activation. These results indicate that LMP1 appropriates TRADD to enable efficient long-term lymphoblastoid cell outgrowth. High-level NF-κB activation also appears to be a critical component of long-term outgrowth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eps15 is a substrate for the tyrosine kinase of the epidermal growth factor receptor (EGFR) and is characterized by the presence of a novel protein:protein interaction domain, the EH domain. Eps15 also stably binds the clathrin adaptor protein complex AP-2. Previous work demonstrated an essential role for eps15 in receptor-mediated endocytosis. In this study we show that, upon activation of the EGFR kinase, eps15 undergoes dramatic relocalization consisting of 1) initial relocalization to the plasma membrane and 2) subsequent colocalization with the EGFR in various intracellular compartments of the endocytic pathway, with the notable exclusion of coated vesicles. Relocalization of eps15 is independent of its binding to the EGFR or of binding of the receptor to AP-2. Furthermore, eps15 appears to undergo tyrosine phosphorylation both at the plasma membrane and in a nocodazole-sensitive compartment, suggesting sustained phosphorylation in endocytic compartments. Our results are consistent with a model in which eps15 undergoes cycles of association:dissociation with membranes and suggest multiple roles for this protein in the endocytic pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The membrane assembly of polytopic membrane proteins is a complicated process. Using Chinese hamster P-glycoprotein (Pgp) as a model protein, we investigated this process previously and found that Pgp expresses more than one topology. One of the variations occurs at the transmembrane (TM) domain including TM3 and TM4: TM4 inserts into membranes in an Nin-Cout rather than the predicted Nout-Cin orientation, and TM3 is in cytoplasm rather than the predicted Nin-Cout orientation in the membrane. It is possible that TM4 has a strong activity to initiate the Nin-Cout membrane insertion, leaving TM3 out of the membrane. Here, we tested this hypothesis by expressing TM3 and TM4 in isolated conditions. Our results show that TM3 of Pgp does not have de novo Nin-Cout membrane insertion activity whereas TM4 initiates the Nin-Cout membrane insertion regardless of the presence of TM3. In contrast, TM3 and TM4 of another polytopic membrane protein, cystic fibrosis transmembrane conductance regulator (CFTR), have a similar level of de novo Nin-Cout membrane insertion activity and TM4 of CFTR functions only as a stop-transfer sequence in the presence of TM3. Based on these findings, we propose that 1) the membrane insertion of TM3 and TM4 of Pgp does not follow the sequential model, which predicts that TM3 initiates Nin-Cout membrane insertion whereas TM4 stops the insertion event; and 2) “leaving one TM segment out of the membrane” may be an important folding mechanism for polytopic membrane proteins, and it is regulated by the Nin-Cout membrane insertion activities of the TM segments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectrin isoforms are often segregated within specialized plasma membrane subdomains where they are thought to contribute to the development of cell surface polarity. It was previously shown that ankyrin and β spectrin are recruited to sites of cell–cell contact in Drosophila S2 cells expressing the homophilic adhesion molecule neuroglian. Here, we show that neuroglian has no apparent effect on a second spectrin isoform (αβH), which is constitutively associated with the plasma membrane in S2 cells. Another membrane marker, the Na,K-ATPase, codistributes with ankyrin and αβ spectrin at sites of neuroglian-mediated contact. The distributions of these markers in epithelial cells in vivo are consistent with the order of events observed in S2 cells. Neuroglian, ankyrin, αβ spectrin, and the Na,K-ATPase colocalize at the lateral domain of salivary gland cells. In contrast, αβH spectrin is sorted to the apical domain of salivary gland and somatic follicle cells. Thus, the two spectrin isoforms respond independently to positional cues at the cell surface: in one case an apically sorted receptor and in the other case a locally activated cell–cell adhesion molecule. The results support a model in which the membrane skeleton behaves as a transducer of positional information within cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The NH2-terminal domains of membrane-bound sterol regulatory element-binding proteins (SREBPs) are released into the cytosol by regulated intramembrane proteolysis, after which they enter the nucleus to activate genes encoding lipid biosynthetic enzymes. Intramembrane proteolysis is catalyzed by Site-2 protease (S2P), a hydrophobic zinc metalloprotease that cleaves SREBPs at a membrane-embedded leucine-cysteine bond. In the current study, we use domain-swapping methods to localize the residues within the SREBP-2 membrane-spanning segment that are required for cleavage by S2P. The studies reveal a requirement for an asparagine-proline sequence in the middle third of the transmembrane segment. We propose a model in which the asparagine-proline sequence serves as an NH2-terminal cap for a portion of the transmembrane α-helix of SREBP, allowing the remainder of the α-helix to unwind partially to expose the peptide bond for cleavage by S2P.