5 resultados para Model Driven Software Development, Arduino, Meta-Modeling, Domain Specific Languages, Software Factory
em National Center for Biotechnology Information - NCBI
Resumo:
Neuregulins are a multi-isoform family of growth factors that activate members of the erbB family of receptor tyrosine kinases. The membrane-anchored isoforms contain the receptor-activating ligand in their extracellular domain, a single membrane-spanning region, and a long cytoplasmic tail. To evaluate the potential biological role of the intracellular domain of the membrane-anchored neuregulin isoforms, we used a domain-specific gene disruption approach to produce a mouse line in which only the region of the neuregulin gene encoding almost the entire intracellular domain was disrupted. Consistent with previous reports in which all neuregulin isoforms were disrupted, the resulting homozygous neuregulin mutants died at E10.5 of circulatory failure and displayed defects in neural and cardiac development. To further understand these in vivo observations, we evaluated a similarly truncated neuregulin construct after transient expression in COS-7 cells. This cytoplasmic tail-deleted mutant, unlike wild-type neuregulin isoforms, was resistant to proteolytic release of its extracellular-domain ligand, a process required for erbB receptor activation. Thus, proteolytic processing of the membrane-bound neuregulin isoforms involved in cranial ganglia and heart embryogenesis is likely developmentally regulated and is critically controlled by their intracellular domain. This observation indicates that erbB receptor activation by membrane-bound neuregulins most likely involves a unique temporally and spatially regulated “inside-out” signaling process that is critical for processing and release of the extracellular-domain ligand.
Resumo:
Parasitic strategies are widely distributed in the plant kingdom and frequently involve coupling parasite organogenesis with cues from the host. In Striga asiatica, for example, the cues that initiate the development of the host attachment organ, the haustorium, originate in the host and trigger the transition from vegetative to parasitic mode in the root meristem. This system therefore offers a unique opportunity to study the signals and mechanisms that control plant cell morphogenesis. Here we establish that the biological activity of structural analogs of the natural inducer displays a marked dependence on redox potential and suggest the existence of a semiquinone intermediate. Building on chemistry that exploits the energetics of such an intermediate, cyclopropyl-p-benzoquinone (CPBQ) is shown to be a specific inhibitor of haustorial development. These data are consistent with a model where haustorial development is initiated by the completion of a redox circuit.
Syntaxin 1A inhibits CFTR chloride channels by means of domain-specific protein–protein interactions
Resumo:
Previously we showed that the functional activity of the epithelial chloride channel that is encoded by the cystic fibrosis gene (CFTR) is reciprocally modulated by two components of the vesicle fusion machinery, syntaxin 1A and Munc-18. Here we report that syntaxin 1A inhibits CFTR chloride channels by means of direct and domain-specific protein–protein interactions. Syntaxin 1A stoichiometrically binds to the N-terminal cytoplasmic tail of CFTR, and this binding is blocked by Munc-18. The modulation of CFTR currents by syntaxin 1A is eliminated either by deletion of this tail or by injecting this tail as a blocking peptide into coexpressing Xenopus oocytes. The CFTR binding site on syntaxin 1A maps to the third predicted helical domain (H3) of this membrane protein. Moreover, CFTR Cl− currents are effectively inhibited by a minimal syntaxin 1A construct (i.e., the membrane-anchored H3 domain) that cannot fully substitute for wild-type syntaxin 1A in membrane fusion reactions. We also show that syntaxin 1A binds to and inhibits the activities of disease-associated mutants of CFTR, and that the chloride current activity of recombinant ΔF508 CFTR (i.e., the most common cystic fibrosis mutant) can be potentiated by disrupting its interaction with syntaxin 1A in cultured epithelial cells. Our results provide evidence for a direct physical interaction between CFTR and syntaxin 1A that limits the functional activities of normal and disease-associated forms of this chloride channel.
Resumo:
The MADS domain homeotic proteins APETALA1 (AP1), APETALA3 (AP3), PISTILLATA (PI), and AGAMOUS (AG) act in a combinatorial manner to specify the identity of Arabidopsis floral organs. The molecular basis for this combinatorial mode of action was investigated. Immunoprecipitation experiments indicate that all four proteins are capable of interacting with each other. However, these proteins exhibit "partner-specificity" for the formation of DNA-binding dimers; only AP1 homodimers, AG homodimers, and AP3/PI heterodimers are capable of binding to CArG-box sequences. Both the AP3/PI heterodimer and the AP1 or AG homodimers are formed when the three corresponding proteins are present together. The use of chimeric proteins formed by domain swapping indicates that the L region (which follows the MADS box) constitutes a key molecular determinant for the selective formation of DNA-binding dimers. The implications of these results for the ABC genetic model of flower development are discussed.
Resumo:
Neuregulins are ligands for the erbB family of receptor tyrosine kinases and mediate growth and differentiation of neural crest, muscle, breast cancer, and Schwann cells. Neuregulins contain an epidermal growth factor-like domain located C-terminally to either an Ig-like domain or a cysteine-rich domain specific to the sensory and motor neuron-derived isoform. Here it is shown that elimination of the Ig-like domain-containing neuregulins by homologous recombination results in embryonic lethality associated with a deficiency of ventricular myocardial trabeculation and impairment of cranial ganglion development. The erbB receptors are expressed in myocardial cells and presumably mediate the neuregulin signal originating from endocardial cells. The trigeminal ganglion is reduced in size and lacks projections toward the brain stem and mandible. We conclude that IgL-domain-containing neuregulins play a major role in cardiac and neuronal development.