6 resultados para Modèles de plaques minces

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We quantitatively analyzed, using laser scanning confocal microscopy, the three-dimensional structure of individual senile plaques in Alzheimer disease. We carried out the quantitative analysis using statistical methods to gain insights about the processes that govern Aβ peptide deposition. Our results show that plaques are complex porous structures with characteristic pore sizes. We interpret plaque morphology in the context of a new dynamical model based on competing aggregation and disaggregation processes in kinetic steady-state equilibrium with an additional diffusion process allowing Aβ deposits to diffuse over the surface of plaques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic resonance microscopy (MRM) theoretically provides the spatial resolution and signal-to-noise ratio needed to resolve neuritic plaques, the neuropathological hallmark of Alzheimer’s disease (AD). Two previously unexplored MR contrast parameters, T2* and diffusion, are tested for plaque-specific contrast to noise. Autopsy specimens from nondemented controls (n = 3) and patients with AD (n = 5) were used. Three-dimensional T2* and diffusion MR images with voxel sizes ranging from 3 × 10−3 mm3 to 5.9 × 10−5 mm3 were acquired. After imaging, specimens were cut and stained with a microwave king silver stain to demonstrate neuritic plaques. From controls, the alveus, fimbria, pyramidal cell layer, hippocampal sulcus, and granule cell layer were detected by either T2* or diffusion contrast. These structures were used as landmarks when correlating MRMs with histological sections. At a voxel resolution of 5.9 × 10−5 mm3, neuritic plaques could be detected by T2*. The neuritic plaques emerged as black, spherical elements on T2* MRMs and could be distinguished from vessels only in cross-section when presented in three dimension. Here we provide MR images of neuritic plaques in vitro. The MRM results reported provide a new direction for applying this technology in vivo. Clearly, the ability to detect and follow the early progression of amyloid-positive brain lesions will greatly aid and simplify the many possibilities to intervene pharmacologically in AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cnm67p, a novel yeast protein, localizes to the microtubule organizing center, the spindle pole body (SPB). Deletion of CNM67 (YNL225c) frequently results in spindle misorientation and impaired nuclear migration, leading to the generation of bi- and multinucleated cells (40%). Electron microscopy indicated that CNM67 is required for proper formation of the SPB outer plaque, a structure that nucleates cytoplasmic (astral) microtubules. Interestingly, cytoplasmic microtubules that are essential for spindle orientation and nuclear migration are still present in cnm67Δ1 cells that lack a detectable outer plaque. These microtubules are attached to the SPB half- bridge throughout the cell cycle. This interaction presumably allows for low-efficiency nuclear migration and thus provides a rescue mechanism in the absence of a functional outer plaque. Although CNM67 is not strictly required for mitosis, it is essential for sporulation. Time-lapse microscopy of cnm67Δ1 cells with green fluorescent protein (GFP)-labeled nuclei indicated that CNM67 is dispensable for nuclear migration (congression) and nuclear fusion during conjugation. This is in agreement with previous data, indicating that cytoplasmic microtubules are organized by the half-bridge during mating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite significant infiltration into tumors and atherosclerotic plaques, the role of T lymphocytes in these pathological conditions is still unclear. We have demonstrated that tumor-infiltrating lymphocytes (TILs) and plaque-infiltrating lymphocytes (PILs) produce heparin-binding epidermal growth factor-like growth factor (HB-EGF) and basic fibroblast growth factor (bFGF) in vitro under nonspecific conditions and in vivo in tumors by immunohistochemical staining. HB-EGF and bFGF derived from TILs and PILs directly stimulated tumor cells and vascular smooth muscle cells (SMCs) in vitro, respectively, while bFGF displayed angiogenic properties. Therefore, T cells may play a critical role in the SMC hyperplasia of atherosclerosis and support tumor progression by direct stimulation and angiogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atherosclerosis, an underlying cause of myocardial infarction, stroke, and other cardiovascular diseases, consists of focal plaques characterized by cholesterol deposition, fibrosis, and inflammation. The presence of activated T lymphocytes and macrophages and high expression of HLA class II molecules are indicative of a local immunologic activation in the atherosclerotic plaque, but the antigen(s) involved has not yet been identified. We established T-cell clones from human atherosclerotic plaques using polyclonal mitogens as stimuli and exposed the clones to potential antigens in the presence of autologous monocytes as antigen-presenting cells. Four of the 27 CD4+ clones responded to oxidized low density lipoprotein (oxLDL) by proliferation and cytokine secretion; this response was dependent on autologous antigen-presenting cells and restricted by HLA-DR. All clones that responded to oxLDL secreted interferon gamma upon activation, but only one produced interleukin 4, suggesting that the response to oxLDL results in immune activation and inflammation but may not be a strong stimulus to antibody production. No significant response to oxLDL could be detected in CD4+ T-cell clones derived from the peripheral blood of the same individuals. Together, the present data suggest that the inflammatory infiltrate in the atherosclerotic plaque is involved in a T-cell-dependent, autoimmune response to oxLDL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery that the epsilon 4 allele of the apolipoprotein E (apoE) gene is a putative risk factor for Alzheimer disease (AD) in the general population has highlighted the role of genetic influences in this extremely common and disabling illness. It has long been recognized that another genetic abnormality, trisomy 21 (Down syndrome), is associated with early and severe development of AD neuropathological lesions. It remains a challenge, however, to understand how these facts relate to the pathological changes in the brains of AD patients. We used computerized image analysis to examine the size distribution of one of the characteristic neuropathological lesions in AD, deposits of A beta peptide in senile plaques (SPs). Surprisingly, we find that a log-normal distribution fits the SP size distribution quite well, motivating a porous model of SP morphogenesis. We then analyzed SP size distribution curves in genotypically defined subgroups of AD patients. The data demonstrate that both apoE epsilon 4/AD and trisomy 21/AD lead to increased amyloid deposition, but by apparently different mechanisms. The size distribution curve is shifted toward larger plaques in trisomy 21/AD, probably reflecting increased A beta production. In apoE epsilon 4/AD, the size distribution is unchanged but the number of SP is increased compared to apoE epsilon 3, suggesting increased probability of SP initiation. These results demonstrate that subgroups of AD patients defined on the basis of molecular characteristics have quantitatively different neuropathological phenotypes.