5 resultados para Mobilize

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ca2+ released from presynaptic and postsynaptic intracellular stores plays important roles in activity-dependent synaptic plasticity, including long-term depression (LTD) of synaptic strength. At Schaffer collateral–CA1 synapses in the hippocampus, presynaptic ryanodine receptor-gated stores appear to mobilize some of the Ca2+ necessary to induce LTD. Cyclic ADP-ribose (cADPR) has recently been proposed as an endogenous activator of ryanodine receptors in sea urchin eggs and several mammalian cell types. Here, we provide evidence that cADPR-mediated signaling pathways play a key role in inducing LTD. We show that biochemical production of cGMP increases cADPR concentration in hippocampal slices in vitro, and that blockade of cGMP-dependent protein kinase, cADPR receptors, or ryanodine-sensitive Ca2+ stores each prevent the induction of LTD at Schaffer collateral–CA1 synapses. A lack of effect of postsynaptic infusion of either cADPR antagonist indicates a probable presynaptic site of action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A minimal hypothesis is proposed concerning the brain processes underlying effortful tasks. It distinguishes two main computational spaces: a unique global workspace composed of distributed and heavily interconnected neurons with long-range axons, and a set of specialized and modular perceptual, motor, memory, evaluative, and attentional processors. Workspace neurons are mobilized in effortful tasks for which the specialized processors do not suffice. They selectively mobilize or suppress, through descending connections, the contribution of specific processor neurons. In the course of task performance, workspace neurons become spontaneously coactivated, forming discrete though variable spatio-temporal patterns subject to modulation by vigilance signals and to selection by reward signals. A computer simulation of the Stroop task shows workspace activation to increase during acquisition of a novel task, effortful execution, and after errors. We outline predictions for spatio-temporal activation patterns during brain imaging, particularly about the contribution of dorsolateral prefrontal cortex and anterior cingulate to the workspace.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance of glucokinase (GK; EC 2.7.1.12) in glucose homeostasis has been demonstrated by the association of GK mutations with diabetes mellitus in humans and by alterations in glucose metabolism in transgenic and gene knockout mice. Liver GK activity in humans and rodents is allosterically inhibited by GK regulatory protein (GKRP). To further understand the role of GKRP in GK regulation, the mouse GKRP gene was inactivated. With the knockout of the GKRP gene, there was a parallel loss of GK protein and activity in mutant mouse liver. The loss was primarily because of posttranscriptional regulation of GK, indicating a positive regulatory role for GKRP in maintaining GK levels and activity. As in rat hepatocytes, both GK and GKRP were localized in the nuclei of mouse hepatocytes cultured in low-glucose-containing medium. In the presence of fructose or high concentrations of glucose, conditions known to relieve GK inhibition by GKRP in vitro, only GK was translocated into the cytoplasm. In the GKRP-mutant hepatocytes, GK was not found in the nucleus under any tested conditions. We propose that GKRP functions as an anchor to sequester and inhibit GK in the hepatocyte nucleus, where it is protected from degradation. This ensures that glucose phosphorylation is minimal when the liver is in the fasting, glucose-producing phase. This also enables the hepatocytes to rapidly mobilize GK into the cytoplasm to phosphorylate and store or metabolize glucose after the ingestion of dietary glucose. In GKRP-mutant mice, the disruption of this regulation and the subsequent decrease in GK activity leads to altered glucose metabolism and impaired glycemic control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Painful peripheral neuropathies are precipitated by nerve injury from disease or trauma. All such injuries will be accompanied by an inflammatory reaction, a neuritis, that will mobilize the immune system. The role of the inflammation itself is difficult to determine in the presence of structural damage to the nerve. A method has been devised to produce a focal neuritis in the rat sciatic nerve that involves no more than trivial structural damage to the nerve. This experimental focal neuritis produces neuropathic pain sensations (heat- and mechano-hyperalgesia, and cold- and mechano-allodynia) in the ipsilateral hind paw. The abnormal pain sensations begin in 1–2 days and last for 4–6 days, with a subsequent return to normal. These results suggest that there is a neuroimmune interaction that occurs at the outset of nerve injury (and perhaps episodically over time in slow developing conditions like diabetic neuropathy) that produces neuropathic pain. The short duration of the phenomena suggest that they may prime the system for more slowly developing mechanisms of abnormal pain (e.g., ectopic discharge in axotomized primary afferent neurons) that underlie the chronic phase of painful neuropathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human macrophages are believed to damage host tissues in chronic inflammatory disease states, but these cells have been reported to express only modest degradative activity in vitro. However, while examining the ability of human monocytes to degrade the extracellular matrix component elastin, we identified culture conditions under which the cells matured into a macrophage population that displayed a degradative phenotype hundreds of times more destructive than that previously ascribed to any other cell population. The monocyte-derived macrophages synthesized elastinolytic matrix metalloproteinases (i.e., gelatinase B and matrilysin) as well as cysteine proteinases (i.e., cathepsins B, L, and S), but only the cathepsins were detected in the extracellular milieu as fully processed, mature enzymes by either vital fluorescence or active-site labeling. Consistent with these observations, macrophage-mediated elastinolytic activity was not affected by matrix metalloproteinase inhibitors but could be almost completely abrogated by inhibiting cathepsins L and S. These data demonstrate that human macrophages mobilize cysteine proteinases to arm themselves with a powerful effector mechanism that can participate in the pathophysiologic remodeling of the extracellular matrix.