48 resultados para Missense

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

How tau mutations lead to neurodegeneration is unknown but may be related to altered microtubule binding properties of mutant tau protein. The tendency for the mutations to cluster around the microtubule-binding domain of tau or to alter the ratios of those splice isoforms that affect binding supports the view that the tau/microtubule interaction is critical and finely regulated. In cells transfected with both mutant and wild-type tau isoforms fused to either yellow fluorescent protein or cyan fluorescent protein we can observe tau fusion proteins that differ by a single amino acid or by the inclusion or exclusion of exon 10. With coexpression of mutant and wild-type tau, the mutant isoform appears diffuse throughout the cytoplasm; however, when mutant tau is expressed alone, it appears mostly bound to the microtubules. Dual imaging of the three- and four-repeat tau isoforms indicated that the expression of four-repeat tau displaced three-repeat tau from the microtubules. These results suggest that altered kinetic competition among the isoforms for microtubule binding could be a disease precipitant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generalized epilepsy with febrile seizures plus (GEFS+), a clinical subset of febrile seizures (FS), is characterized by frequent episodes beyond 6 years of age (FS+) and various types of subsequent epilepsy. Mutations in β1 and αI-subunit genes of voltage-gated Na+ channels have been associated with GEFS+1 and 2, respectively. Here, we report a mutation resulting in an amino acid exchange (R187W) in the gene encoding the α-subunit of neuronal voltage-gated Na+ channel type II (Nav1.2) in a patient with FS associated with afebrile seizures. The mutation R187W occurring on Arg187, a highly conserved residue among voltage-gated Na+ channels, was not found in 224 alleles of unaffected individuals. Whole-cell patch clamp recordings on human embryonic kidney (HEK) cells expressing a rat wild-type (rNav1.2) and the corresponding mutant channels showed that the mutant channel inactivated more slowly than wild-type whereas the Na+ channel conductance was not affected. Prolonged residence in the open state of the R187W mutant channel may augment Na+ influx and thereby underlie the neuronal hyperexcitability that induces seizure activity. Even though a small pedigree could not show clear cosegregation with the disease phenotype, these findings strongly suggest the involvement of Nav1.2 in a human disease and propose the R187W mutation as the genetic defect responsible for febrile seizures associated with afebrile seizures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liddle syndrome is a mendelian form of hypertension characterized by constitutively elevated renal Na reabsorption that can result from activating mutations in the beta or gamma subunit of the epithelial Na channel. All reported mutations have deleted the last 45-76 normal amino acids from the cytoplasmic C terminus of one of these channel subunits. While these findings implicate these terminal segments in the normal negative regulation of channel activity, they do not identify the amino acid residues that are critical targets for these mutations. Potential targets include the short highly conserved Pro-rich segments present in the C terminus of beta and gamma subunits; these segments are similar to SH3-binding domains that mediate protein-protein interaction. We now report a kindred with Liddle syndrome in which affected patients have a mutation in codon 616 of the beta subunit resulting in substitution of a Leu for one of these highly conserved Pro residues. The functional significance of this mutation is demonstrated both by the finding that this is a de novo mutation appearing concordantly with the appearance of Liddle syndrome in the kindred and also by the marked activation of amiloride-sensitive Na channel activity seen in Xenopus oocytes expressing channels containing this mutant subunit (8.8-fold increase compared with control oocytes expressing normal channel subunits; P = 0.003). These findings demonstrate a de novo missense mutation causing Liddle syndrome and identify a critical channel residue important for the normal regulation of Na reabsorption in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The peroxisome biogenesis disorders (PBDs), including Zellweger syndrome (ZS) and neonatal adrenoleukodystrophy (NALD), are autosomal recessive diseases caused by defects in peroxisome assembly, for which at least 10 complementation groups have been reported. We have isolated a human PEX1 cDNA (HsPEX1) by functional complementation of peroxisome deficiency of a mutant Chinese hamster ovary (CHO) cell line, ZP107, transformed with peroxisome targeting signal type 1-tagged “enhanced” green fluorescent protein. This cDNA encodes a hydrophilic protein (Pex1p) comprising 1,283 amino acids, with high homology to the AAA-type ATPase family. A stable transformant of ZP107 with HsPEX1 was morphologically and biochemically restored for peroxisome biogenesis. HsPEX1 expression restored peroxisomal protein import in fibroblasts from three patients with ZS and NALD of complementation group I (CG-I), which is the highest-incidence PBD. A CG-I ZS patient (PBDE-04) possessed compound heterozygous, inactivating mutations: a missense point mutation resulting in Leu-664 → Pro and a deletion of the sequence from Gly-634 to His-690 presumably caused by missplicing (splice site mutation). Both PBDE-04 PEX1 cDNAs were defective in peroxisome-restoring activity when expressed in the patient fibroblasts as well as in ZP107 cells. These results demonstrate that PEX1 is the causative gene for CG-I peroxisomal disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations of von Hippel–Lindau disease (VHL) tumor-suppressor gene product (pVHL) are found in patients with dominant inherited VHL syndrome and in the vast majority of sporadic clear cell renal carcinomas. The function of the pVHL protein has not been clarified. pVHL has been shown to form a complex with elongin B and elongin C (VBC) and with cullin (CUL)-2. In light of the structural analogy of VBC-CUL-2 to SKP1-CUL-1-F-box ubiquitin ligases, the ubiquitin ligase activity of VBC-CUL-2 was examined in this study. We show that VBC-CUL-2 exhibits ubiquitin ligase activity, and we identified UbcH5a, b, and c, but not CDC34, as the ubiquitin-conjugating enzymes of the VBC-CUL-2 ubiquitin ligase. The protein Rbx1/ROC1 enhances ligase activity of VBC-CUL-2 as it does in the SKP1-CUL-1-F-box protein ligase complex. We also found that pVHL associates with two proteins, p100 and p220, which migrate at a similar molecular weight as two major bands in the ubiquitination assay. Furthermore, naturally occurring pVHL missense mutations, including mutants capable of forming a complex with elongin B–elongin C-CUL-2, fail to associate with p100 and p220 and cannot exhibit the E3 ligase activity. These results suggest that pVHL might be the substrate recognition subunit of the VBC-CUL-2 E3 ligase. This is also, to our knowledge, the first example of a human tumor-suppressor protein being directly involved in the ubiquitin conjugation system which leads to the targeted degradation of substrate proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A M182T substitution was discovered as a second-site suppressor of a missense mutation in TEM-1 β-lactamase. The combination of the M182T substitution with other substitutions in the enzyme indicates the M182T substitution is a global suppressor of missense mutations in β-lactamase. The M182T substitution also is found in natural variants of TEM-1 β-lactamase with altered substrate specificity that have evolved in response to antibiotic therapy. The M182T substitution may have been selected in natural isolates as a suppressor of folding or stability defects resulting from mutations associated with drug resistance. This pathway of protein evolution may occur in other targets of antimicrobial drugs such as the HIV protease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

β-catenin has functions as both an adhesion and a signaling molecule. Disruption of these functions through mutations of the β-catenin gene (CTNNB1) may be important in the development of colorectal tumors. We examined the entire coding sequence of β-catenin by reverse transcriptase–PCR (RT-PCR) and direct sequencing of 23 human colorectal cancer cell lines from 21 patients. In two cell lines, there was apparent instability of the β-catenin mRNA. Five different mutations (26%) were found in the remaining 21cell lines (from 19 patients). A three-base deletion (codon 45) was identified in the cell line HCT 116, whereas cell lines SW 48, HCA 46, CACO 2, and Colo 201 each contained single-base missense mutations (codons 33, 183, 245, and 287, respectively). All 23 cell lines had full-length β-catenin protein that was detectable by Western blotting and that coprecipitated with E-cadherin. In three of the cell lines with CTNNB1 mutations, complexes of β-catenin with α-catenin and APC were detectable. In SW48 and HCA 46, however, we did not detect complexes of β-catenin protein with α-catenin and APC, respectively. These results show that selection of CTNNB1 mutations occurs in up to 26% of colorectal cancers from which cell lines are derived. In these cases, mutation selection is probably for altered β-catenin function, which may significantly alter intracellular signaling and intercellular adhesion and may serve as a complement to APC mutations in the early stages of tumorigenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Individuals with hemophilia A require frequent infusion of preparations of coagulation factor VIII. The activity of factor VIII (FVIII) as a cofactor for factor IXa in the coagulation cascade is limited by its instability after activation by thrombin. Activation of FVIII occurs through proteolytic cleavage and generates an unstable FVIII heterotrimer that is subject to rapid dissociation of its subunits. In addition, further proteolytic cleavage by thrombin, factor Xa, factor IXa, and activated protein C can lead to inactivation. We have engineered and characterized a FVIII protein, IR8, that has enhanced in vitro stability of FVIII activity due to resistance to subunit dissociation and proteolytic inactivation. FVIII was genetically engineered by deletion of residues 794-1689 so that the A2 domain is covalently attached to the light chain. Missense mutations at thrombin and activated protein C inactivation cleavage sites provided resistance to proteolysis, resulting in a single-chain protein that has maximal activity after a single cleavage after arginine-372. The specific activity of partially purified protein produced in transfected COS-1 monkey cells was 5-fold higher than wild-type (WT) FVIII. Whereas WT FVIII was inactivated by thrombin after 10 min in vitro, IR8 still retained 38% of peak activity after 4 hr. Whereas binding of IR8 to von Willebrand factor (vWF) was reduced 10-fold compared with WT FVIII, in the presence of an anti-light chain antibody, ESH8, binding of IR8 to vWF increased 5-fold. These results demonstrate that residues 1690–2332 of FVIII are sufficient to support high-affinity vWF binding. Whereas ESH8 inhibited WT factor VIII activity, IR8 retained its activity in the presence of ESH8. We propose that resistance to A2 subunit dissociation abrogates inhibition by the ESH8 antibody. The stable FVIIIa described here provides the opportunity to study the activated form of this critical coagulation factor and demonstrates that proteins can be improved by rationale design through genetic engineering technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pallido-ponto-nigral degeneration (PPND) is one of the most well characterized familial neurodegenerative disorders linked to chromosome 17q21–22. These hereditary disorders are known collectively as frontotemporal dementia (FTD) and parkinsonism linked to chromosome 17 (FTDP-17). Although the clinical features and associated regional variations in the neuronal loss observed in different FTDP-17 kindreds are diverse, the diagnostic lesions of FTDP-17 brains are tau-rich filaments in the cytoplasm of specific subpopulations of neurons and glial cells. The microtubule associated protein (tau) gene is located on chromosome 17q21–22. For these reasons, we investigated the possibility that PPND and other FTDP-17 syndromes might be caused by mutations in the tau gene. Two missense mutations in exon 10 of the tau gene that segregate with disease, Asn279Lys in the PPND kindred and Pro301Leu in four other FTDP-17 kindreds, were found. A third mutation was found in the intron adjacent to the 3′ splice site of exon 10 in patients from another FTDP-17 family. Transcripts that contain exon 10 encode tau isoforms with four microtubule (MT)-binding repeats (4Rtau) as opposed to tau isoforms with three MT-binding repeats (3Rtau). The insoluble tau aggregates isolated from brains of patients with each mutation were analyzed by immunoblotting using tau-specific antibodies. For each of three mutations, abnormal tau with an apparent Mr of 64 and 69 was observed. The dephosphorylated material comigrated with tau isoforms containing exon 10 having four MT-binding repeats but not with 3Rtau. Thus, the brains of patients with both the missense mutations and the splice junction mutation contain aggregates of insoluble 4Rtau in filamentous inclusions, which may lead to neurodegeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in a number of cardiac sarcomeric protein genes cause hypertrophic cardiomyopathy (HCM). Previous findings indicate that HCM-causing mutations associated with a truncated cardiac troponin T (TnT) and missense mutations in the β-myosin heavy chain share abnormalities in common, acting as dominant negative alleles that impair contractile performance. In contrast, Lin et al. [Lin, D., Bobkova, A., Homsher, E. & Tobacman, L. S. (1996) J. Clin. Invest. 97, 2842–2848] characterized a TnT point mutation (Ile79Asn) and concluded that it might lead to hypercontractility and, thus, potentially a different mechanism for HCM pathogenesis. In this study, three HCM-causing cardiac TnT mutations (Ile79Asn, Arg92Gln, and ΔGlu160) were studied in a myotube expression system. Functional studies of wild-type and mutant transfected myotubes revealed that all three mutants decreased the calcium sensitivity of force production and that the two missense mutations (Ile79Asn and Arg92Gln) increased the unloaded shortening velocity nearly 2-fold. The data demonstrate that TnT can alter the rate of myosin cross-bridge detachment, and thus the troponin complex plays a greater role in modulating muscle contractile performance than was recognized previously. Furthermore, these data suggest that these TnT mutations may cause disease via an increased energetic load on the heart. This would represent a second paradigm for HCM pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA methylation is an important regulator of genetic information in species ranging from bacteria to humans. DNA methylation appears to be critical for mammalian development because mice nullizygous for a targeted disruption of the DNMT1 DNA methyltransferase die at an early embryonic stage. No DNA methyltransferase mutations have been reported in humans until now. We describe here the first example of naturally occurring mutations in a mammalian DNA methyltransferase gene. These mutations occur in patients with a rare autosomal recessive disorder, which is termed the ICF syndrome, for immunodeficiency, centromeric instability, and facial anomalies. Centromeric instability of chromosomes 1, 9, and 16 is associated with abnormal hypomethylation of CpG sites in their pericentromeric satellite regions. We are able to complement this hypomethylation defect by somatic cell fusion to Chinese hamster ovary cells, suggesting that the ICF gene is conserved in the hamster and promotes de novo methylation. ICF has been localized to a 9-centimorgan region of chromosome 20 by homozygosity mapping. By searching for homologies to known DNA methyltransferases, we identified a genomic sequence in the ICF region that contains the homologue of the mouse Dnmt3b methyltransferase gene. Using the human sequence to screen ICF kindreds, we discovered mutations in four patients from three families. Mutations include two missense substitutions and a 3-aa insertion resulting from the creation of a novel 3′ splice acceptor. None of the mutations were found in over 200 normal chromosomes. We conclude that mutations in the DNMT3B are responsible for the ICF syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that the functional activity of the diphtheria toxin repressor DtxR is controlled by iron, which serves as an essential cofactor necessary for activation of target DNA binding by this regulatory element. In this communication, we describe the isolation and characterization of a unique series of DtxR mutants that are constitutively active and repress the expression of β-galactosidase from a diphtheria tox promoter/operator–lacZ transcriptional fusion, even in the absence of iron. These self-activating mutants of DtxR (SAD) were isolated through the use of a positive selection system for the cloning of functional dtxR alleles and target DNA operator sites. Of the four independently isolated SAD mutants that were characterized, two (SAD2 and SAD11) were found to carry a single missense mutation (E175K) in their respective C-terminal SH3-like domains. In contrast, the mutant allele encoding SAD3 was found to carry a total of six missense mutations distributed throughout the N- and C-terminal domains of the repressor. Partial diploid analysis of strains carrying both native dtxR and alleles encoding either SAD2 or SAD3 demonstrate that these iron-independent mutants possess a positive dominant phenotype in the regulation of β-galactosidase expression from a diphtheria tox promoter/operator–lacZ transcriptional fusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since their discovery, protein tyrosine phosphatases have been speculated to play a role in tumor suppression because of their ability to antagonize the growth-promoting protein tyrosine kinases. Recently, a tumor suppressor from human chromosome 10q23, called PTEN or MMAC1, has been identified that shares homology with the protein tyrosine phosphatase family. Germ-line mutations in PTEN give rise to several related neoplastic disorders, including Cowden disease. A key step in understanding the function of PTEN as a tumor suppressor is to identify its physiological substrates. Here we report that a missense mutation in PTEN, PTEN-G129E, which is observed in two Cowden disease kindreds, specifically ablates the ability of PTEN to recognize inositol phospholipids as a substrate, suggesting that loss of the lipid phosphatase activity is responsible for the etiology of the disease. Furthermore, expression of wild-type or substrate-trapping forms of PTEN in HEK293 cells altered the levels of the phospholipid products of phosphatidylinositol 3-kinase and ectopic expression of the phosphatase in PTEN-deficient tumor cell lines resulted in the inhibition of protein kinase (PK) B/Akt and regulation of cell survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myostatin (GDF-8) is a member of the transforming growth factor β superfamily of secreted growth and differentiation factors that is essential for proper regulation of skeletal muscle mass in mice. Here we report the myostatin sequences of nine other vertebrate species and the identification of mutations in the coding sequence of bovine myostatin in two breeds of double-muscled cattle, Belgian Blue and Piedmontese, which are known to have an increase in muscle mass relative to conventional cattle. The Belgian Blue myostatin sequence contains an 11-nucleotide deletion in the third exon which causes a frameshift that eliminates virtually all of the mature, active region of the molecule. The Piedmontese myostatin sequence contains a missense mutation in exon 3, resulting in a substitution of tyrosine for an invariant cysteine in the mature region of the protein. The similarity in phenotypes of double-muscled cattle and myostatin null mice suggests that myostatin performs the same biological function in these two species and is a potentially useful target for genetic manipulation in other farm animals.