6 resultados para Minimization of open stack problem
em National Center for Biotechnology Information - NCBI
Resumo:
The molten globule, a widespread protein-folding intermediate, can attain a native-like backbone topology, even in the apparent absence of rigid side-chain packing. Nonetheless, mutagenesis studies suggest that molten globules are stabilized by some degree of side-chain packing among specific hydrophobic residues. Here we investigate the importance of hydrophobic side-chain diversity in determining the overall fold of the α-lactalbumin molten globule. We have replaced all of the hydrophobic amino acids in the sequence of the helical domain with a representative amino acid, leucine. Remarkably, the minimized molecule forms a molten globule that retains many structural features characteristic of a native α-lactalbumin fold. Thus, nonspecific hydrophobic interactions may be sufficient to determine the global fold of a protein.
Resumo:
A “most probable state” equilibrium statistical theory for random distributions of hetons in a closed basin is developed here in the context of two-layer quasigeostrophic models for the spreading phase of open-ocean convection. The theory depends only on bulk conserved quantities such as energy, circulation, and the range of values of potential vorticity in each layer. The simplest theory is formulated for a uniform cooling event over the entire basin that triggers a homogeneous random distribution of convective towers. For a small Rossby deformation radius typical for open-ocean convection sites, the most probable states that arise from this theory strongly resemble the saturated baroclinic states of the spreading phase of convection, with a stabilizing barotropic rim current and localized temperature anomaly.
Resumo:
In studies of variants of the P(ant) promoter of bacteriophage P22, the Arc protein was found not only to slow the rate at which RNA polymerase forms open complexes but also to accelerate the rate at which the enzyme clears the promoter. These dual activities permit Arc, bound at a single operator subsite, to act as an activator or as a repressor of different promoter variants. For example, Arc activates a P(ant) variant for which promoter clearance is rate limiting in the presence and absence of Arc but represses a closely related variant for which open-complex formation becomes rate limiting in the presence of Arc. The acceleration of promoter clearance by Arc requires occupancy of the operator subsite proximal to the -35 region and is diminished when Arc bears a mutation in Arg-23, a residue that makes a DNA-backbone contact in the operator complex.
Resumo:
The mathematical underpinning of the pulse width modulation (PWM) technique lies in the attempt to represent “accurately” harmonic waveforms using only square forms of a fixed height. The accuracy can be measured using many norms, but the quality of the approximation of the analog signal (a harmonic form) by a digital one (simple pulses of a fixed high voltage level) requires the elimination of high order harmonics in the error term. The most important practical problem is in “accurate” reproduction of sine-wave using the same number of pulses as the number of high harmonics eliminated. We describe in this paper a complete solution of the PWM problem using Padé approximations, orthogonal polynomials, and solitons. The main result of the paper is the characterization of discrete pulses answering the general PWM problem in terms of the manifold of all rational solutions to Korteweg-de Vries equations.
Resumo:
How do secretory proteins and other cargo targeted to post-Golgi locations traverse the Golgi stack? We report immunoelectron microscopy experiments establishing that a Golgi-restricted SNARE, GOS 28, is present in the same population of COPI vesicles as anterograde cargo marked by vesicular stomatitis virus glycoprotein, but is excluded from the COPI vesicles containing retrograde-targeted cargo (marked by KDEL receptor). We also report that GOS 28 and its partnering t-SNARE heavy chain, syntaxin 5, reside together in every cisterna of the stack. Taken together, these data raise the possibility that the anterograde cargo-laden COPI vesicles, retained locally by means of tethers, are inherently capable of fusing with neighboring cisternae on either side. If so, quanta of exported proteins would transit the stack in GOS 28–COPI vesicles via a bidirectional random walk, entering at the cis face and leaving at the trans face and percolating up and down the stack in between. Percolating vesicles carrying both post-Golgi cargo and Golgi residents up and down the stack would reconcile disparate observations on Golgi transport in cells and in cell-free systems.