8 resultados para Minerals in animal nutrition.

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is becoming clear that the cationic antimicrobial peptides are an important component of the innate defenses of all species of life. Such peptides can be constitutively expressed or induced by bacteria or their products. The best peptides have good activities vs. a broad range of bacterial strains, including antibiotic-resistant isolates. They kill very rapidly, do not easily select resistant mutants, are synergistic with conventional antibiotics, other peptides, and lysozyme, and are able to kill bacteria in animal models. It is known that bacterial infections, especially when treated with antibiotics, can lead to the release of bacterial products such as lipopolysaccharide (LPS) and lipoteichoic acid, resulting in potentially lethal sepsis. In contrast to antibiotics, the peptides actually prevent cytokine induction by bacterial products in tissue culture and human blood, and they block the onset of sepsis in mouse models of endotoxemia. Consistent with this, transcriptional gene array experiments using a macrophage cell line demonstrated that a model peptide, CEMA, blocks the expression of many genes whose transcription was induced by LPS. The peptides do this in part by blocking LPS interaction with the serum protein LBP. In addition, CEMA itself has a direct effect on macrophage gene expression. Because cationic antimicrobial peptides are induced by LPS and are able to dampen the septic response of animal cells to LPS, we propose that, in addition to their role in direct and lysozyme-assisted killing of microbes, they have a role in feedback regulation of cytokine responses. We are currently developing variant peptides as therapeutics against antibiotic-resistant infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hepatocyte growth factor (HGF/SF) receptor, Met, regulates mitogenesis, motility, and morphogenesis in a cell type-dependent fashion. Activation of Met via autocrine, paracrine, or mutational mechanisms can lead to tumorigenesis and metastasis and numerous studies have linked inappropriate expression of this ligand-receptor pair to most types of human solid tumors. To prepare mAbs to human HGF/SF, mice were immunized with native and denatured preparations of the ligand. Recloned mAbs were tested in vitro for blocking activity against scattering and branching morphogenesis. Our results show that no single mAb was capable of neutralizing the in vitro activity of HGF/SF, and that the ligand possesses a minimum of three epitopes that must be blocked to prevent Met tyrosine kinase activation. In vivo, the neutralizing mAb combination inhibited s.c. growth in athymic nu/nu mice of tumors dependent on an autocrine Met-HGF/SF loop. Importantly, growth of human glioblastoma multiforme xenografts expressing Met and HGF/SF were markedly reduced in the presence of HGF/SF-neutralizing mAbs. These results suggest interrupting autocrine and/or paracrine Met-HGF/SF signaling in tumors dependent on this pathway is a possible intervention strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA vaccines expressing herpes simplex virus type 2 (HSV-2) full-length glycoprotein D (gD), or a truncated form of HSV-2 glycoprotein B (gB) were evaluated for protective efficacy in two experimental models of HSV-2 infection. Intramuscular (i.m.) injection of mice showed that each construction induced neutralizing serum antibodies and protected the mice from lethal HSV-2 infection. Dose-titration studies showed that low doses (< or = 1 microgram) of either DNA construction induced protective immunity, and that a single immunization with the gD construction was effective. The two DNAs were then tested in a low-dosage combination in guinea pigs. Immune sera from DNA-injected animals had antibodies to both gD and gB, and virus neutralizing activity. When challenged by vaginal infection with HSV-2, the DNA-immunized animals were significantly protected from primary genital disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibitors of glycosylation provide a tool for studying the biology of glycoconjugates. One class of inhibitors consists of glycosides that block glycoconjugate synthesis by acting as primers of free oligosaccharide chains. A typical primer contains one sugar linked to a hydrophobic aglycone. In this report, we describe a way to use disaccharides as primers. Chinese hamster ovary cells readily take up glycosides containing a pentose linked to naphthol, but they take up hexosides less efficiently and disaccharides not at all. Linking phenanthrol to a hexose improves its uptake dramatically but has no effect on disaccharides. To circumvent this problem, analogs of Xyl beta 1-->6Gal beta-O-2-naphthol were tested as primers of glycosaminoglycan chains. The unmodified disaccharide did not prime, but methylated derivatives had activity in the order Xyl beta 1-->6Gal(Me)3-beta-O-2-naphthol > Xyl beta 1-->6Gal (Me)2 beta-O-2-naphthol >> Xyl beta 1-->6Gal(Me)beta-O-2-naphthol. Acetylated Xyl beta 1-->6Gal beta-O-2-naphthol also primed glycosaminoglycans efficiently, suggesting that the terminal xylose residue was exposed by removing the acetyl groups. The general utility of using acetyl groups to create disaccharide primers was shown by the priming of oligosaccharides on peracetylated Gal beta 1-->4GlcNAc beta-O-naphthalenemethanol. This disaccharide inhibited sialyl Lewis X expression on HL-60 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For nearly 200 years since their discovery in 1756, geologists considered the zeolite minerals to occur as fairly large crystals in the vugs and cavities of basalts and other traprock formations. Here, they were prized by mineral collectors, but their small abundance and polymineralic nature defied commercial exploitation. As the synthetic zeolite (molecular sieve) business began to take hold in the late 1950s, huge beds of zeolite-rich sediments, formed by the alteration of volcanic ash (glass) in lake and marine waters, were discovered in the western United States and elsewhere in the world. These beds were found to contain as much as 95% of a single zeolite; they were generally flat-lying and easily mined by surface methods. The properties of these low-cost natural materials mimicked those of many of their synthetic counterparts, and considerable effort has made since that time to develop applications for them based on their unique adsorption, cation-exchange, dehydration–rehydration, and catalytic properties. Natural zeolites (i.e., those found in volcanogenic sedimentary rocks) have been and are being used as building stone, as lightweight aggregate and pozzolans in cements and concretes, as filler in paper, in the take-up of Cs and Sr from nuclear waste and fallout, as soil amendments in agronomy and horticulture, in the removal of ammonia from municipal, industrial, and agricultural waste and drinking waters, as energy exchangers in solar refrigerators, as dietary supplements in animal diets, as consumer deodorizers, in pet litters, in taking up ammonia from animal manures, and as ammonia filters in kidney-dialysis units. From their use in construction during Roman times, to their role as hydroponic (zeoponic) substrate for growing plants on space missions, to their recent success in the healing of cuts and wounds, natural zeolites are now considered to be full-fledged mineral commodities, the use of which promise to expand even more in the future.