4 resultados para Mine explosions.
em National Center for Biotechnology Information - NCBI
Resumo:
The distinction of “largest explosions in the universe” has been bestowed on cosmic gamma-ray bursts. Their afterglows are brighter than supernovae and therefore are called hypernovae. Photometry and spectroscopy of these afterglows have provided major breakthroughs in our understanding of this mysterious phenomenon.
Resumo:
The potential for health risks to humans exposed to the asbestos minerals continues to be a public health concern. Although the production and use of the commercial amphibole asbestos minerals—grunerite (amosite) and riebeckite (crocidolite)—have been almost completely eliminated from world commerce, special opportunities for potentially significant exposures remain. Commercially viable deposits of grunerite asbestos are very rare, but it can occur as a gangue mineral in a limited part of a mine otherwise thought asbestos-free. This report describes such a situation, in which a very localized seam of grunerite asbestos was identified in an iron ore mine. The geological occurrence of the seam in the ore body is described, as well as the mineralogical character of the grunerite asbestos. The most relevant epidemiological studies of workers exposed to grunerite asbestos are used to gauge the hazards associated with the inhalation of this fibrous mineral. Both analytical transmission electron microscopy and phase-contrast optical microscopy were used to quantify the fibers present in the air during mining in the area with outcroppings of grunerite asbestos. Analytical transmission electron microscopy and continuous-scan x-ray diffraction were used to determine the type of asbestos fiber present. Knowing the level of the miner’s exposures, we carried out a risk assessment by using a model developed for the Environmental Protection Agency.
Resumo:
In a recent contribution to this journal Ellis and Schramm [Ellis, J. & Schramm, D. N. (1995) Proc. Natl. Acad. Sci. USA 92, 235-238] claim that supernova explosions can cause massive biological extinctions as a result of strongly enhanced stratospheric NOx (NO + NO2) production by accompanying galactic cosmic rays. They suggested that these NOx productions which would last over several centuries and occur once every few hundred million years would result in ozone depletions of about 95%, leading to vastly increased levels of biologically damaging solar ultraviolet radiation. Our detailed model calculations show, however, substantially smaller ozone depletions ranging from at most 60% at high latitudes to below 20% at the equator.
Resumo:
The proper placement of the Escherichia coli division septum requires the MinE protein. MinE accomplishes this by imparting topological specificity to a division inhibitor coded by the minC and minD genes. As a result, the division inhibitor prevents septation at potential division sites that exist at the cell poles but permits septation at the normal division site at midcell. In this paper, we define two functions of MinE that are required for this effect and present evidence that different domains within the 88-amino acid MinE protein are responsible for each of these two functions. The first domain, responsible for the ability of MinE to counteract the activity of the MinCD division inhibitor, is located in a small region near the N terminus of the protein. The second domain, required for the topological specificity of MinE function, is located in the more distal region of the protein and affects the site specificity of placement of the division septum even when separated from the domain responsible for suppression of the activity of the division inhibitor.