11 resultados para Middle latency response
em National Center for Biotechnology Information - NCBI
Resumo:
The neural pathway that governs an escape response of Drosophila to sudden changes in light intensity can be artificially induced by electrical stimulation of the brain and monitored by electrical recording from the effector muscles. We have refined previous work in this system to permit reliable ascertainment of two kinds of response: (i) a short-latency response that follows from direct excitation of a giant fiber neuron in the interior of the fly brain and (ii) a long-latency response in which electrical stimulation triggers neurons in the optic ganglia that ultimately impinge on the giant fiber neuron. The general anesthetic halothane is reported here to have very different potencies in inhibiting these two responses. The long-latency response is obliterated at concentrations similar to those that cause gross behavioral effects in adult flies, whereas the short-latency response is only partially inhibited at doses that are 10-fold higher. Three other volatile anesthetic agents show a similar pattern. Thus, as in higher organisms, the Drosophila nervous system is differentiated into components of high and low sensitivity to general anesthetics. Moreover, this work shows that one of the sensitive components of the nervous system lies in the optic lobe and is readily assayed by its effect on downstream systems; it should provide a focus for exploring the effects of genetic alteration of anesthetic sensitivity.
Resumo:
To investigate the role of filamentous actin in the endocytic pathway, we used the cell-permeant drug Jasplakinolide (JAS) to polymerize actin in intact polarized Madin–Darby canine kidney (MDCK) cells. The uptake and accumulation of the fluid-phase markers fluorescein isothiocyanate (FITC)-dextran and horseradish peroxidase (HRP) were followed in JAS-treated or untreated cells with confocal fluorescence microscopy, biochemical assays, and electron microscopy. Pretreatment with JAS increased the uptake and accumulation of fluid-phase markers in MDCK cells. JAS increased endocytosis in a polarized manner, with a marked effect on fluid-phase uptake from the basolateral surface but not from the apical surface of polarized MDCK cells. The early uptake of FITC-dextran and HRP was increased more than twofold in JAS-treated cells. At later times, FITC-dextran and HRP accumulated in clustered endosomes in the basal and middle regions of JAS-treated cells. The large accumulated endosomes were similar to late endosomes but they were not colabeled for other late endosome markers, such as rab7 or mannose-6-phosphate receptor. JAS altered transport in the endocytic pathway at a later stage than the microtubule-dependent step affected by nocodazole. JAS also had a notable effect on cell morphology, inducing membrane bunching at the apical pole of MDCK cells. Although other studies have implicated actin in endocytosis at the apical cell surface, our results provide novel evidence that filamentous actin is also involved in the endocytosis of fluid-phase markers from the basolateral membrane of polarized cells.
Resumo:
The unfolded protein response (UPR) controls the levels of molecular chaperones and enzymes involved in protein folding in the endoplasmic reticulum (ER). We recently isolated ATF6 as a candidate for mammalian UPR-specific transcription factor. We report here that ATF6 constitutively expressed as a 90-kDa protein (p90ATF6) is directly converted to a 50-kDa protein (p50ATF6) in ER-stressed cells. Furthermore, we showed that the most important consequence of this conversion was altered subcellular localization; p90ATF6 is embedded in the ER, whereas p50ATF6 is a nuclear protein. p90ATF6 is a type II transmembrane glycoprotein with a hydrophobic stretch in the middle of the molecule. Thus, the N-terminal half containing a basic leucine zipper motif is oriented facing the cytoplasm. Full-length ATF6 as well as its C-terminal deletion mutant carrying the transmembrane domain is localized in the ER when transfected. In contrast, mutant ATF6 representing the cytoplasmic region translocates into the nucleus and activates transcription of the endogenous GRP78/BiP gene. We propose that ER stress-induced proteolysis of membrane-bound p90ATF6 releases soluble p50ATF6, leading to induced transcription in the nucleus. Unlike yeast UPR, mammalian UPR appears to use a system similar to that reported for cholesterol homeostasis.
Resumo:
The central nervous system (CNS) effects of mental stress in patients with coronary artery disease (CAD) are unexplored. The present study used positron emission tomography (PET) to measure brain correlates of mental stress induced by an arithmetic serial subtraction task in CAD and healthy subjects. Mental stress resulted in hyperactivation in CAD patients compared with healthy subjects in several brain areas including the left parietal cortex [angular gyrus/parallel sulcus (area 39)], left anterior cingulate (area 32), right visual association cortex (area 18), left fusiform gyrus, and cerebellum. These same regions were activated within the CAD patient group during mental stress versus control conditions. In the group of healthy subjects, activation was significant only in the left inferior frontal gyrus during mental stress compared with counting control. Decreases in blood flow also were produced by mental stress in CAD versus healthy subjects in right thalamus (lateral dorsal, lateral posterior), right superior frontal gyrus (areas 32, 24, and 10), and right middle temporal gyrus (area 21) (in the region of the auditory association cortex). Of particular interest, a subgroup of CAD patients that developed painless myocardial ischemia during mental stress had hyperactivation in the left hippocampus and inferior parietal lobule (area 40), left middle (area 10) and superior frontal gyrus (area 8), temporal pole, and visual association cortex (area 18), and a concomitant decrease in activation observed in the anterior cingulate bilaterally, right middle and superior frontal gyri, and right visual association cortex (area 18) compared with CAD patients without myocardial ischemia. These findings demonstrate an exaggerated cerebral cortical response and exaggerated asymmetry to mental stress in individuals with CAD.
Resumo:
Vascular responses to neural activity are exploited as the basis of a number of brain imaging techniques. The vascular response is thought to be too slow to resolve the temporal sequence of events involved in cognitive tasks, and hence, imaging studies of mental chronometry have relied on techniques such as the evoked potential. Using rapid functional MRI (fMRI) of single trials of two simple behavioral tasks, we demonstrate that while the microvascular response to the onset of neural activity is delayed consistently by several seconds, the relative timing between the onset of the fMRI responses in different brain areas appears preserved. We examined a number of parameters that characterize the fMRI response and determined that its onset time is best defined by the inflection point from the resting baseline. We have found that fMRI onset latencies determined in this manner correlate well with independently measurable parameters of the tasks such as reaction time or stimulus presentation time and can be used to determine the origin of processing delays during cognitive or perceptual tasks with a temporal accuracy of tens of milliseconds and spatial resolution of millimeters.
Resumo:
Unlike many pathogens that are overtly toxic to their hosts, the primary virulence determinant of Mycobacterium tuberculosis appears to be its ability to persist for years or decades within humans in a clinically latent state. Since early in the 20th century latency has been linked to hypoxic conditions within the host, but the response of M. tuberculosis to a hypoxic signal remains poorly characterized. The M. tuberculosis α-crystallin (acr) gene is powerfully and rapidly induced at reduced oxygen tensions, providing us with a means to identify regulators of the hypoxic response. Using a whole genome microarray, we identified >100 genes whose expression is rapidly altered by defined hypoxic conditions. Numerous genes involved in biosynthesis and aerobic metabolism are repressed, whereas a high proportion of the induced genes have no known function. Among the induced genes is an apparent operon that includes the putative two-component response regulator pair Rv3133c/Rv3132c. When we interrupted expression of this operon by targeted disruption of the upstream gene Rv3134c, the hypoxic regulation of acr was eliminated. These results suggest a possible role for Rv3132c/3133c/3134c in mycobacterial latency.
Resumo:
The distribution of S to sulfate, glucosinolates, glutathione, and the insoluble fraction within oilseed rape (Brassica napus L.) leaves of different ages was investigated during vegetative growth. The concentrations of glutathione and glucosinolates increased from the oldest to the youngest leaves, whereas the opposite was observed for SO42−. The concentration of insoluble S was similar among all of the leaves. At sufficient S supply and in the youngest leaves, 2% of total S was allocated to glutathione, 6% to glucosinolates, 50% to the insoluble fraction, and the remainder accumulated as SO42−. In the middle and oldest leaves, 70% to 90% of total S accumulated as SO42−, whereas glutathione and glucosinolates together accounted for less than 1% of S. When the S supply was withdrawn (minus S), the concentrations of all S-containing compounds, particularly SO42−, decreased in the youngest and middle leaves. Neither glucosinolates nor glutathione were major sources of S during S deficiency. Plants grown on nutrient solution containing minus S and low N were less deficient than plants grown on solution containing minus S and high N. The effect of N was explained by differences in growth rate. The different responses of leaves of different ages to S deficiency have to be taken into account for the development of field diagnostic tests to determine whether plants are S deficient.
Resumo:
Study of the mechanism of HIV-1 postintegration latency in the ACH2 cell line demonstrates that these cells failed to increase HIV-1 production following treatment with exogenous Tat. Reasoning that the defect in ACH2 cells involves the Tat response, we analyzed the sequence of tat cDNA and Tat responsive element (TAR) from the virus integrated in ACH2. Tat cDNA sequence is closely related to that of HIV LAI, and the encoded protein is fully functional in terms of long terminal repeat (LTR) transactivation. Cloning of a region corresponding to the 5'-LTR from ACH2, however, identified a point mutation (C37 -> T) in TAR. This mutation impaired Tat responsiveness of the LTR in transient transfection assays, and the measured defect was complemented in cells that had been treated with tetradecanoyl phorbol acetate or tumor necrosis factor type alpha (TNF-alpha). A compensatory mutation in TAR (G28 -> A), designed to reestablish base pairing in the TAR hairpin, restored wild-type Tat responsiveness. When the (C37 -> T) mutation was introduced in an infectious clone of HIV-1, no viral production was measured in the absence of TNF-alpha, whereas full complementation was observed when the infection was conducted in the presence of TNF-alpha or when a compensatory mutation (G28 -> A) was introduced into TAR. These experiments identify a novel mutation associated with HIV-1 latency and suggest that alterations in the Tat-TAR axis can be a crucial determinant of the latent phenotype in infected individuals.
Resumo:
All three isoforms of transforming growth factors beta (TGF-betal, TGF-beta2, and TGF-beta3) are secreted as latent complexes and activated extracellularly, leading to the release of the mature cytokines from their noncovalently associated proregions, also known as latency-associated peptides (LAPs). The LAP region of TGF-beta1 was expressed in a baculovirus expression system and purified to homogeneity. In vitro assays of growth inhibition and gene induction mediated by TGF-beta3 demonstrate that recombinant TGF-beta1 LAP is a potent inhibitor of the activities of TGF-betal, -beta2, and -beta3. Effective dosages of LAP for 50% neutralization of TGF-beta activities range from 4.7- to 80-fold molar excess depending on the TGF-beta isoform and activity examined. Using 125I-labeled LAP, we show that the intraperitoneal application route is effective for systemic administration of LAP. Comparison of concentrations of LAP in tissues shows a homogenous pattern in most organs with the exception of heart and muscle, in which levels of LAP are 4- to 8-fold lower. In transgenic mice with elevated hepatic levels of bioactive TGF-betal, treatment with recombinant LAP completely reverses suppression of the early proliferative response induced by TGF-beta1 in remnant livers after partial hepatectomy. The results suggest that recombinant LAP is a potent inhibitor of bioactive TGF-beta both in vitro and in vivo, after intraperitoneal administration. Recombinant LAP should be a useful tool for novel approaches to study and therapeutically modulate pathophysiological processes mediated by TGF-beta3.
Resumo:
A recurrent theme in the organization of vertebrate visual cortex is that of receptive fields with an associated "silent" opponency component. In the middle temporal area (area MT), a cortical visual area involved in the analysis of retinal motion in primates, this opponency appears in the form of a region outside the classical receptive field (CRF) that in itself gives no response but suppresses responses to motion evoked within the CRF. This antagonistic motion surround has been described as very large and symmetrically arrayed around the CRF. On the basis of this view, the primary function of the surround has long been thought to consist of simple figure-ground segregation based on movement. We have made use of small stimulus patches to map the form and extent of the surround and find evidence that the surround inhibition of many MT cells is in fact confined to restricted regions on one side or on opposite sides of the CRF. Such regions endow MT cells with the ability to make local-to-local motion comparisons, capable of extracting more complex features from the visual environment, and as such, may be better viewed as intrinsic parts of the receptive field, rather than as separate entities responsible for local-to-global comparisons.
Resumo:
Intramuscular injection of plasmid DNA expression vectors encoding the three envelope proteins of the hepatitis B virus (HBV) induced humoral responses in C57BL/6 mice specific to several antigenic determinants of the viral envelope. The first antibodies appeared within 1-2 weeks after injection of DNA and included antibodies of the IgM isotype. Over the next few weeks, an IgM to IgG class switch occurred, indicating helper T-lymphocyte activity. Peak IgG titers were reached by 4-8 weeks after a single DNA injection and were maintained for at least 6 months without further DNA injections. The antibodies to the envelope proteins reacted with group- and subtype-specific antigenic determinants of the HBV surface antigen (HBsAg). Expression vectors encoding the major (S) and middle (preS2 plus S) envelope proteins induced antibodies specific to the S protein and preS2 domain, and preS2 antibodies were prominent at early time points. In general, the expression vectors induced humoral responses in mice that mimic those observed in humans during the course of natural HBV infection.