6 resultados para Microorganisms -- Therapeutic use
em National Center for Biotechnology Information - NCBI
Resumo:
Serotonin N-acetyltransferase is the enzyme responsible for the diurnal rhythm of melatonin production in the pineal gland of animals and humans. Inhibitors of this enzyme active in cell culture have not been reported previously. The compound N-bromoacetyltryptamine was shown to be a potent inhibitor of this enzyme in vitro and in a pineal cell culture assay (IC50 ≈ 500 nM). The mechanism of inhibition is suggested to involve a serotonin N-acetyltransferase-catalyzed alkylation reaction between N-bromoacetyltryptamine and reduced CoA, resulting in the production of a tight-binding bisubstrate analog inhibitor. This alkyltransferase activity is apparently catalyzed at a functionally distinct site compared with the acetyltransferase activity active site on serotonin N-acetyltransferase. Such active site plasticity is suggested to result from a subtle conformational alteration in the protein. This plasticity allows for an unusual form of mechanism-based inhibition with multiple turnovers, resulting in “molecular fratricide.” N-bromoacetyltryptamine should serve as a useful tool for dissecting the role of melatonin in circadian rhythm as well as a potential lead compound for therapeutic use in mood and sleep disorders.
Resumo:
HIV integrase, the enzyme that inserts the viral DNA into the host chromosome, has no mammalian counterpart, making it an attractive target for antiviral drug design. As one of the three enzymes produced by HIV, it can be expected that inhibitors of this enzyme will complement the therapeutic use of HIV protease and reverse transcriptase inhibitors. We have determined the structure of a complex of the HIV-1 integrase core domain with a novel inhibitor, 5ClTEP, 1-(5-chloroindol-3-yl)-3-hydroxy-3-(2H-tetrazol-5-yl)-propenone, to 2.1-Å resolution. The inhibitor binds centrally in the active site of the integrase and makes a number of close contacts with the protein. Only minor changes in the protein accompany inhibitor binding. This inhibitor complex will provide a platform for structure-based design of an additional class of inhibitors for antiviral therapy.
Resumo:
We have synthesized 13 hammerhead ribozyme variants, each containing an abasic residue at a specific position of the catalytic core. The activity of each of the variants is significantly reduced. In four cases, however, activity can be rescued by exogenous addition of the missing base. For one variant, the rescue is 300-fold; for another, the rescue is to the wild-type level. This latter abasic variant (G10.1X) has been characterized in detail. Activation is specific for guanine, the base initially removed. In addition, the specificity for guanine versus adenine is substantially altered by replacing C with U in the opposite strand of the ribozyme. These results show that a binding site for a small, noncharged ligand can be created in a preexisting ribozyme structure. This has implications for structure-function analysis of RNA, and leads to speculations about evolution in an "RNA world" and about the potential therapeutic use of ribozymes.
Resumo:
Diseases characterized by retinal neovascularization are among the principal causes of visual loss worldwide. The hypoxia-stimulated expression of vascular endothelial growth factor (VEGF) has been implicated in the proliferation of new blood vessels. We have investigated the use of antisense phosphorothioate oligodeoxynucleotides against murine VEGF to inhibit retinal neovascularization and VEGF synthesis in a murine model of proliferative retinopathy. Intravitreal injections of two different antisense phosphorothioate oligodeoxynucleotides prior to the onset of proliferative retinopathy reduced new blood vessel growth a mean of 25 and 31% compared with controls. This inhibition was dependent on the concentration of antisense phosphorothioate oligodeoxynucleotides and resulted in a 40-66% reduction in the level of VEGF protein, as determined by Western blot analysis. Control (sense, nonspecific) phosphorothioate oligodeoxynucleotides did not cause a significant reduction in retinal neovascularization or VEGF protein levels. These data further establish a fundamental role for VEGF expression in ischemia-induced proliferative retinopathies and a potential therapeutic use for antisense phosphorothioate oligodeoxynucleotides.
Resumo:
We have reported previously that murine bone marrow-derived dendritic cells (DC) pulsed with whole tumor lysates can mediate potent antitumor immune responses both in vitro and in vivo. Because successful therapy was dependent on host immune T cells, we have now evaluated whether the systemic administration of the T cell stimulatory/growth promoting cytokine interleukin-2 (IL-2) could enhance tumor lysate-pulsed DC-based immunizations to further promote protective immunity toward, and therapeutic rejection of, syngeneic murine tumors. In three separate approaches using a weakly immunogenic sarcoma (MCA-207), the systemic administration of nontoxic doses of recombinant IL-2 (20,000 and 40,000 IU/dose) was capable of mediating significant increases in the potency of DC-based immunizations. IL-2 could augment the efficacy of tumor lysate-pulsed DC to induce protective immunity to lethal tumor challenge as well as enhance splenic cytotoxic T lymphocyte activity and interferon-γ production in these treated mice. Moreover, treatment with the combination of tumor lysate-pulsed DC and IL-2 could also mediate regressions of established pulmonary 3-day micrometastases and 7-day macrometastases as well as established 14- and 28-day s.c. tumors, leading to either significant cure rates or prolongation in overall survival. Collectively, these findings show that nontoxic doses of recombinant IL-2 can potentiate the antitumor effects of tumor lysate-pulsed DC in vivo and provide preclinical rationale for the use of IL-2 in DC-based vaccine strategies in patients with advanced cancer.
Resumo:
If RNA editing could be rationally directed to mutated RNA sequences, genetic diseases caused by certain base substitutions could be treated. Here we use a synthetic complementary RNA oligonucleotide to direct the correction of a premature stop codon mutation in dystrophin RNA. The complementary RNA oligonucleotide was hybridized to a premature stop codon and the hybrid was treated with nuclear extracts containing the cellular enzyme double-stranded RNA adenosine deaminase. When the treated RNAs were translated in vitro, a dramatic increase in expression of a downstream luciferase coding region was observed. The cDNA sequence data are consistent with deamination of the adenosine in the UAG stop codon to inosine by double-stranded RNA adenosine deaminase. Injection of oligonucleotide-mRNA hybrids into Xenopus embryos also resulted in an increase in luciferase expression. These experiments demonstrate the principle of therapeutic RNA editing.