7 resultados para Microorganism

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three-dimensional structure of Corynebacterium 2,5-diketo-d-gluconic acid reductase A (2,5-DKGR A; EC 1.1.1.-), in complex with cofactor NADPH, has been solved by using x-ray crystallographic data to 2.1-Å resolution. This enzyme catalyzes stereospecific reduction of 2,5-diketo-d-gluconate (2,5-DKG) to 2-keto-l-gulonate. Thus the three-dimensional structure has now been solved for a prokaryotic example of the aldo–keto reductase superfamily. The details of the binding of the NADPH cofactor help to explain why 2,5-DKGR exhibits lower binding affinity for cofactor than the related human aldose reductase does. Furthermore, changes in the local loop structure near the cofactor suggest that 2,5-DKGR will not exhibit the biphasic cofactor binding characteristics observed in aldose reductase. Although the crystal structure does not include substrate, the two ordered water molecules present within the substrate-binding pocket are postulated to provide positional landmarks for the substrate 5-keto and 4-hydroxyl groups. The structural basis for several previously described active-site mutants of 2,5-DKGR A is also proposed. Recent research efforts have described a novel approach to the synthesis of l-ascorbate (vitamin C) by using a genetically engineered microorganism that is capable of synthesizing 2,5-DKG from glucose and subsequently is transformed with the gene for 2,5-DKGR. These modifications create a microorganism capable of direct production of 2-keto-l-gulonate from d-glucose, and the gulonate can subsequently be converted into vitamin C. In economic terms, vitamin C is the single most important specialty chemical manufactured in the world. Understanding the structural determinants of specificity, catalysis, and stability for 2,5-DKGR A is of substantial commercial interest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wolbachia, a maternally transmitted microorganism of the Rickettsial family, is known to cause cytoplasmic incompatibility, parthenogenesis, or feminization in various insect species. The bacterium–host relationship is usually symbiotic: incompatibility between infected males and uninfected females can enhance reproductive isolation and evolution, whereas the other mechanisms enhance progeny production. We have discovered a variant Wolbachia carried by Drosophila melanogaster in which this cozy relationship is abrogated. Although quiescent during the fly’s development, it begins massive proliferation in the adult, causing widespread degeneration of tissues, including brain, retina, and muscle, culminating in early death. Tetracycline treatment of carrier flies eliminates both the bacteria and the degeneration, restoring normal life-span. The 16s rDNA sequence is over 98% identical to Wolbachia known from other insects. Examination of laboratory strains of D. melanogaster commonly used in genetic experiments reveals that a large proportion actually carry Wolbachia in a nonvirulent form, which might affect their longevity and behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rotavirus contains two outer capsid viral proteins, the spike protein VP4 and major capsid component VP7, both of which are implicated in cell entry. We show that VP4 and VP7 contain tripeptide sequences previously shown to act as recognition sites for integrins in extracellular matrix proteins. VP4 contains the α2β1 integrin ligand site DGE. In VP7, the αxβ2 integrin ligand site GPR and the α4β1 integrin ligand site LDV are embedded in a novel disintegrin-like domain that also shows sequence similarity to fibronectin and the tie receptor tyrosine kinase. Microorganism sequence homology to these ligand motifs and to disintegrins has not been reported previously. In our experiments, peptides including these rotaviral tripeptides and mAbs directed to these integrins specifically blocked rotavirus infection of cells shown to express α2β1 and β2 integrins. Rotavirus VP4-mediated cell entry may involve the α2β1 integrin, whereas VP7 appears to interact with αxβ2 and α4β1 integrins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ascorbate (vitamin C) recycling occurs when extracellular ascorbate is oxidized, transported as dehydroascorbic acid, and reduced intracellularly to ascorbate. We investigated microorganism induction of ascorbate recycling in human neutrophils and in microorganisms themselves. Ascorbate recycling was determined by measuring intracellular ascorbate accumulation. Ascorbate recycling in neutrophils was induced by both Gram-positive and Gram-negative pathogenic bacteria, and the fungal pathogen Candida albicans. Induction of recycling resulted in as high as a 30-fold increase in intracellular ascorbate compared with neutrophils not exposed to microorganisms. Recycling occurred at physiologic concentrations of extracellular ascorbate within 20 min, occurred over a 100-fold range of effector/target ratios, and depended on oxidation of extracellular ascorbate to dehydroascorbic acid. Ascorbate recycling did not occur in bacteria nor in C. albicans. Ascorbate did not enter microorganisms, and dehydroascorbic acid entry was less than could be accounted for by diffusion. Because microorganism lysates reduced dehydroascorbic acid to ascorbate, ascorbate recycling was absent because of negligible entry of the substrate dehydroascorbic acid. Because ascorbate recycling occurs in human neutrophils but not in microorganisms, it may represent a eukaryotic defense mechanism against oxidants with possible clinical implications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intracellular water concentrations in single living cells were visualized by nonlinear coherent anti-Stokes Raman scattering (CARS) microscopy. In combination with isotopic exchange measurements, CARS microscopy allowed the real-time observation of transient intracellular hydrodynamics at a high spatial resolution. Studies of the hydrodynamics in the microorganism Dictyostelium discoideum indicated the presence of a microscopic region near the plasma membrane where the mobility of water molecules is severely restricted. Modeling the transient hydrodynamics eventuated in the determination of cell-specific cytosolic diffusion and plasma membrane permeability constants. Our experiments demonstrate that CARS microscopy offers an invaluable tool for probing single-cell water dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Live vaccine vectors are usually very effective and generally elicit immune responses of higher magnitude and longer duration than nonliving vectors. Consequently, much attention has been turned to the engineering of oral pathogens for the delivery of foreign antigens to the gut-associated lymphoid tissues. However, no bacterial vector has yet been designed to specifically take advantage of the nasal route of mucosal vaccination. Herein we describe a genetic system for the expression of heterologous antigens fused to the filamentous hemagglutinin (FHA) in Bordetella pertussis. The Schistosoma mansoni glutathione S-transferase (Sm28GST) fused to FHA was detected at the cell surface and in the culture supernatants of recombinant B. pertussis. The mouse colonization capacity and autoagglutination of the recombinant microorganism were indistinguishable from those of the wild-type strain. In addition, and in contrast to the wild-type strain, a single intranasal administration of the recombinant strain induced both IgA and IgG antibodies against Sm28GST and against FHA in the bronchoalveolar lavage fluids. No anti-Sm28GST antibodies were detected in the serum, strongly suggesting that the observed immune response was of mucosal origin. This demonstrates, to our knowledge, for the first time that recombinant respiratory pathogens can induce mucosal immune responses against heterologous antigens, and this may constitute a first step toward the development of combined live vaccines administrable via the respiratory route.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bacterial pathogen Shigella flexneri causes bacillary dysentery in humans by invading coloncytes. Upon contact with epithelial cells, S. flexneri elicits localized plasma membrane projections sustained by long actin filaments which engulf the microorganism. The products necessary for Shigella entry include three secretory proteins: IpaB, IpaC, and IpaD. Extracellular IpaB and IpaC associate in a soluble complex, the Ipa complex. We have immunopurified this Ipa complex on latex beads and found that they were efficiently internalized into HeLa cells. Like S. flexneri entry, uptake of the beads bearing the Ipa complex was associated with membrane projections and polymerization of actin at the site of cell-bead interaction and was dependent on small Rho GTPases. These results indicate that a secreted factor can promote S. flexneri entry into epithelial cells.