8 resultados para Miao
em National Center for Biotechnology Information - NCBI
Resumo:
Activation of protein kinase C (PKC) protects the heart from ischemic injury; however, its mechanism of action is unknown, in part because no model for chronic activation of PKC has been available. To test whether chronic, mild elevation of PKC activity in adult mouse hearts results in myocardial protection during ischemia or reperfusion, hearts isolated from transgenic mice expressing a low level of activated PKCβ throughout adulthood (β-Tx) were compared with control hearts before ischemia, during 12 or 28 min of no-flow ischemia, and during reperfusion. Left-ventricular-developed pressure in isolated isovolumic hearts, normalized to heart weight, was similar in the two groups at baseline. However, recovery of contractile function was markedly improved in β-Tx hearts after either 12 (97 ± 3% vs. 69 ± 4%) or 28 min of ischemia (76 ± 8% vs. 48 ± 3%). Chelerythrine, a PKC inhibitor, abolished the difference between the two groups, indicating that the beneficial effect was PKC-mediated. 31P NMR spectroscopy was used to test whether modification of intracellular pH and/or preservation of high-energy phosphate levels during ischemia contributed to the cardioprotection in β-Tx hearts. No difference in intracellular pH or high-energy phosphate levels was found between the β-Tx and control hearts at baseline or during ischemia. Thus, long-term modest increase in PKC activity in adult mouse hearts did not alter baseline function but did lead to improved postischemic recovery. Furthermore, our results suggest that mechanisms other than reduced acidification and preservation of high-energy phosphate levels during ischemia contribute to the improved recovery.
Resumo:
Long-term potentiation (LTP) in the hippocampal slice preparation has been proposed as an in vitro model for long-term memory. However, correlation of LTP with memory in living animals has been difficult to demonstrate. Furthermore, in the last few years evidence has accumulated that dissociate the two. Because potassium channels might determine the weight of synapses in networks, we studied the role of Kv1.4, a presynaptic A-type voltage-dependent K+ channel, in both memory and LTP. Reverse transcription–PCR and Western blot analysis with specific antibodies showed that antisense oligodeoxyribonucleotide to Kv1.4 microinjected intraventricularly into rat brains obstructed hippocampal Kv1.4 mRNA, “knocking down” the protein in the hippocampus. This antisense knockdown had no effect on rat spatial maze learning, memory, or exploratory behavior, but eliminated both early- and late-phase LTP and reduced paired-pulse facilitation (a presynaptic effect) in CA1 pyramidal neurons without affecting dentate gyrus LTP. This presynaptic Kv1.4 knockdown together with previous postsynaptic Kv1.1 knockdown demonstrates that CA1 LTP is neither necessary nor sufficient for rat spatial memory.
Resumo:
We describe an approach to the high-resolution three-dimensional structural determination of macromolecules that utilizes ultrashort, intense x-ray pulses to record diffraction data in combination with direct phase retrieval by the oversampling technique. It is shown that a simulated molecular diffraction pattern at 2.5-Å resolution accumulated from multiple copies of single rubisco biomolecules, each generated by a femtosecond-level x-ray free electron laser pulse, can be successfully phased and transformed into an accurate electron density map comparable to that obtained by more conventional methods. The phase problem is solved by using an iterative algorithm with a random phase set as an initial input. The convergence speed of the algorithm is reasonably fast, typically around a few hundred iterations. This approach and phasing method do not require any ab initio information about the molecule, do not require an extended ordered lattice array, and can tolerate high noise and some missing intensity data at the center of the diffraction pattern. With the prospects of the x-ray free electron lasers, this approach could provide a major new opportunity for the high-resolution three-dimensional structure determination of single biomolecules.
Resumo:
The active form of vitamin D, 1α,25-dihydroxyvitamin D [1α,25(OH)2D], is synthesized from its precursor 25 hydroxyvitamin D [25(OH)D] via the catalytic action of the 25(OH)D-1α-hydroxylase [1α(OH)ase] enzyme. Many roles in cell growth and differentiation have been attributed to 1,25(OH)2D, including a central role in calcium homeostasis and skeletal metabolism. To investigate the in vivo functions of 1,25(OH)2D and the molecular basis of its actions, we developed a mouse model deficient in 1α(OH)ase by targeted ablation of the hormone-binding and heme-binding domains of the 1α(OH)ase gene. After weaning, mice developed hypocalcemia, secondary hyperparathyroidism, retarded growth, and the skeletal abnormalities characteristic of rickets. These abnormalities are similar to those described in humans with the genetic disorder vitamin D dependent rickets type I [VDDR-I; also known as pseudovitamin D-deficiency rickets (PDDR)]. Altered non-collagenous matrix protein expression and reduced numbers of osteoclasts were also observed in bone. Female mutant mice were infertile and exhibited uterine hypoplasia and absent corpora lutea. Furthermore, histologically enlarged lymph nodes in the vicinity of the thyroid gland and a reduction in CD4- and CD8-positive peripheral T lymphocytes were observed. Alopecia, reported in vitamin D receptor (VDR)-deficient mice and in humans with VDDR-II, was not seen. The findings establish a critical role for the 1α(OH)ase enzyme in mineral and skeletal homeostasis as well as in female reproduction and also point to an important role in regulating immune function.
Resumo:
In many plants, osmotic stress induces a rapid accumulation of proline through de novo synthesis from glutamate. This response is thought to play a pivotal role in osmotic stress tolerance [Kishor, P. B. K., Hong, Z., Miao, G.-H., Hu, C.-A. A. and Verma, D. P. S. (1995) Plant Physiol. 108, 1387-1394]. During recovery from osmotic stress, accumulated proline is rapidly oxidized to glutamate and the first step of this process is catalyzed by proline oxidase. We have isolated a full-length cDNA from Arabidopsis thaliana, At-POX, which maps to a single locus on chromosome 3 and that encodes a predicted polypeptide of 499 amino acids showing significant similarity with proline oxidase sequences from Drosophila and Saccharomyces cerevisiae (55.5% and 45.1%, respectively). The predicted location of the encoded polypeptide is the inner mitochondrial membrane. RNA gel blot analysis revealed that At-POX mRNA levels declined rapidly upon osmotic stress and this decline preceded proline accumulation. On the other hand, At-POX mRNA levels rapidly increased during recovery. Free proline, exogenously added to plants, was found to be an effective inducer of At-POX expression; indeed, At-POX was highly expressed in flowers and mature seeds where the proline level is higher relative to other organs of Arabidopsis. Our results indicate that stress- and developmentally derived signals interact to determine proline homeostasis in Arabidopsis.
Resumo:
Recent studies have demonstrated the existence of a soluble fibroblast growth factor (FGF) receptor type 1 (FGFR1) extracellular domain in the circulation and in vascular basement membranes. However, the process of FGFR1 ectodomain release from the plasma membrane is not known. Here we report that the 72-kDa gelatinase A (matrix metalloproteinase type 2, MMP2) can hydrolyze the Val368-Met369 peptide bond of the FGFR1 ectodomain, eight amino acids upstream of the transmembrane domain, thus releasing the entire extracellular domain. Similar results were obtained regardless of whether FGF was first bound to the receptor or not. The action of MMP2 abolished binding of FGF to an immobilized recombinant FGFR1 ectodomain fusion protein and to Chinese hamster ovary cells overexpressing FGFR1 The released recombinant FGFR1 ectodomain was able to bind FGF after MMP2 cleavage, suggesting that the cleaved soluble receptor maintained its FGF binding capacity. The activity of MMP2 could not be reproduced by the 92-kDa gelatinase B (MMP9) and was inhibited by tissue inhibitor of metalloproteinase type 2. These studies demonstrate that FGFR1 may be a specific target for MMP2 on the cell surface, yielding a soluble FGF receptor that may modulate the mitogenic and angiogenic activities of FGF.
Resumo:
Promoter and silencer elements of the immediate 5' flanking region of the gene coding for human factor VII were identified and characterized. The major transcription start site, designated as +1, was determined by RACE (rapid amplification of cDNA ends) analysis of human liver cDNA and was found to be located 50 bp upstream from the translation start site. Two minor transcription start sites were found at bp +32 bp and +37. Progressive deletions of the 5' flanking region were fused to the chloramphenicol acetyltransferase reporter gene and transient expression in HepG2 and HeLa cells was measured. Two promoter elements that were essential for hepatocyte-specific transcription were identified. The first site, FVIIP1, located at bp -19 to +1, functioned independently of orientation or position and contributed about one-third of the promoter activity of the factor VII gene. Electrophoretic mobility-shift, competition, and anti-hepatocyte nuclear factor 4 (HNF4) antibody supershift experiments demonstrated that this site contained an HNF-4 binding element homologous to the promoters in the genes coding for factor IX and factor X. The second site, FVIIP2, located at bp -50 to -26, also functioned independent of orientation or position and contributed about two thirds of the promoter activity in the gene for factor VII. Functional assays with mutant sequences demonstrated that a 10-bp G + C-rich core sequence which shares 90% sequence identity with the prothrombin gene enhancer was essential for the function of the second site. Mobility-shift and competition assays suggested that this site also binds hepatic-specific factors as well as the transcription factor Sp1. Two silencer elements located upstream of the promoter region spanning bp -130 to -103 (FVIIS1 site) and bp -202 to -130 (FVIIS2) were also identified by reporter gene assays.