25 resultados para Metalaxyl degrading
em National Center for Biotechnology Information - NCBI
Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum.
Resumo:
Plasmodium falciparum is the major causative agent of malaria, a disease of worldwide importance. Resistance to current drugs such as chloroquine and mefloquine is spreading at an alarming rate, and our antimalarial armamentarium is almost depleted. The malarial parasite encodes two homologous aspartic proteases, plasmepsins I and II, which are essential components of its hemoglobin-degradation pathway and are novel targets for antimalarial drug development. We have determined the crystal structure of recombinant plasmepsin II complexed with pepstatin A. This represents the first reported crystal structure of a protein from P. falciparum. The crystals contain molecules in two different conformations, revealing a remarkable degree of interdomain flexibility of the enzyme. The structure was used to design a series of selective low molecular weight compounds that inhibit both plasmepsin II and the growth of P. falciparum in culture.
Resumo:
The formation of heteroduplex joints in Escherichia coli recombination is initiated by invasion of double-stranded DNA by a single-stranded homologue. To determine the polarity of the invasive strand, linear molecules with direct terminal repeats were released by in vivo restriction of infecting chimeric phage DNA and heteroduplex products of intramolecular recombination were analyzed. With this substrate, the invasive strand is expected to be incorporated into the circular crossover product and the complementary strand is expected to be incorporated into the reciprocal linear product. Strands of both polarities were incorporated into heteroduplex structures, but only strands ending 3′ at the break were incorporated into circular products. This result indicates that invasion of the 3′-ending strand initiates the heteroduplex joint formation and that the complementary 5′-ending strand is incorporated into heteroduplex structures in the process of reciprocal strand exchange. The polarity of the invasive strand was not affected by recD, recJ, or xonA mutations. However, xonA and recJ mutations increased the proportion of heteroduplexes containing 5′-ending strands. This observation suggests that RecJ exonuclease and exonuclease I may enhance recombination by degrading the displaced strands during branch migration and thereby causing strand exchange to be unidirectional.
Resumo:
Several angiogenic factors and extracellular matrix-degrading enzymes that promote invasion and metastasis of cancer are produced by stromal fibroblasts that surround cancer cells. The expression of genes that code for some of these proteins is regulated by the transcription factor NF-κB. In this report, we demonstrate that conditioned medium (CM) from estrogen receptor (ER)-negative but not ER-positive breast cancer cells induces NF-κB in fibroblasts. In contrast, CM from both ER-positive and ER-negative breast cancer cells induces NF-κB in macrophages and endothelial cells. NF-κB activation in fibroblasts was accompanied by induction of interleukin 6 (IL-6) and urokinase plasminogen activator (uPA), both of which promote angiogenesis and metastasis. A survey of cytokines known for their ability to induce NF-κB identified IL-1α as the factor responsible for NF-κB activation in fibroblasts. Analysis of primary breast carcinomas revealed the presence of IL-1α transcripts in majority of lymph node-positive breast cancers. These results along with the known role of IL-1α and IL-6 in osteoclast formation provide insight into the mechanism of metastasis and hypercalcemia in advanced breast cancers.
Resumo:
Although protein degradation is enhanced in muscle-wasting conditions and limits the rate of muscle growth in domestic animals, the proteolytic system responsible for degrading myofibrillar proteins in skeletal muscle is not well defined. The goals of this study were to evaluate the roles of the calpains (calcium-activated cysteine proteases) in mediating muscle protein degradation and the extent to which these proteases participate in protein turnover in muscle. Two strategies to regulate intracellular calpain activities were developed: overexpression of dominant-negative m-calpain and overexpression of calpastatin inhibitory domain. To express these constructs, L8 myoblast cell lines were transfected with LacSwitch plasmids, which allowed for isopropyl β-d-thiogalactoside-dependent expression of the gene of interest. Inhibition of calpain stabilized fodrin, a well characterized calpain substrate. Under conditions of accelerated degradation (serum withdrawal), inhibition of m-calpain reduced protein degradation by 30%, whereas calpastatin inhibitory domain expression reduced degradation by 63%. Inhibition of calpain also stabilized nebulin. These observations indicate that calpains play key roles in the disassembly of sarcomeric proteins. Inhibition of calpain activity may have therapeutic value in treatment of muscle-wasting conditions and may enhance muscle growth in domestic animals.
Resumo:
Heparin-like glycosaminoglycans, acidic complex polysaccharides present on cell surfaces and in the extracellular matrix, regulate important physiological processes such as anticoagulation and angiogenesis. Heparin-like glycosaminoglycan degrading enzymes or heparinases are powerful tools that have enabled the elucidation of important biological properties of heparin-like glycosaminoglycans in vitro and in vivo. With an overall goal of developing an approach to sequence heparin-like glycosaminoglycans using the heparinases, we recently have elaborated a mass spectrometry methodology to elucidate the mechanism of depolymerization of heparin-like glycosaminoglycans by heparinase I. In this study, we investigate the mechanism of depolymerization of heparin-like glycosaminoglycans by heparinase II, which possesses the broadest known substrate specificity of the heparinases. We show here that heparinase II cleaves heparin-like glycosaminoglycans endolytically in a nonrandom manner. In addition, we show that heparinase II has two distinct active sites and provide evidence that one of the active sites is heparinase I-like, cleaving at hexosamine–sulfated iduronate linkages, whereas the other is presumably heparinase III-like, cleaving at hexosamine–glucuronate linkages. Elucidation of the mechanism of depolymerization of heparin-like glycosaminoglycans by the heparinases and mutant heparinases could pave the way to the development of much needed methods to sequence heparin-like glycosaminoglycans.
Resumo:
We report the isolation of 15 Neurospora crassa mutants defective in “quelling” or transgene-induced gene silencing. These quelling-defective mutants (qde) belonging to three complementation groups have provided insights into the mechanism of posttranscriptional gene silencing in N. crassa. The recessive nature of the qde mutations indicates that the encoded gene products act in trans. We show that when qde genes are mutated in a transgenic-induced silenced strain containing many copies of the transgene, the expression of the endogenous gene is maintained despite the presence of transgene sense RNA, the molecule proposed to trigger quelling. Moreover, the qde mutants failed to show quelling when tested with another gene, suggesting that they may be universally defective in transgene-induced gene silencing. As such, qde genes may be involved in sensing aberrant sense RNA and/or targeting/degrading the native mRNA. The qde mutations may be used to isolate the genes encoding the first components of the quelling mechanism. Moreover, these quelling mutants may be important in applied and basic research for the creation of strains able to overexpress a transgene.
Resumo:
To examine the role of matrilysin (MAT), an epithelial cell-specific matrix metalloproteinase, in the normal development and function of reproductive tissues, we generated transgenic animals that overexpress MAT in several reproductive organs. Three distinct forms of human MAT (wild-type, active, and inactive) were placed under the control of the murine mammary tumor virus promoter/enhancer. Although wild-type, active, and inactive forms of the human MAT protein could be produced in an in vitro culture system, mutations of the MAT cDNA significantly decreased the efficiency with which the MAT protein was produced in vivo. Therefore, animals carrying the wild-type MAT transgene that expressed high levels of human MAT in vivo were further examined. Mammary glands from female transgenic animals were morphologically normal throughout mammary development, but displayed an increased ability to produce β-casein protein in virgin animals. In addition, beginning at approximately 8 mo of age, the testes of male transgenic animals became disorganized with apparent disintegration of interstitial tissue that normally surrounds the seminiferous tubules. The disruption of testis morphology was concurrent with the onset of infertility. These results suggest that overexpression of the matrix-degrading enzyme MAT alters the integrity of the extracellular matrix and thereby induces cellular differentiation and cellular destruction in a tissue-specific manner.
Resumo:
The mechanisms responsible for the induction of matrix-degrading proteases during lung injury are ill defined. Macrophage-derived mediators are believed to play a role in regulating synthesis and turnover of extracellular matrix at sites of inflammation. We find a localized increase in the expression of the rat interstitial collagenase (MMP-13; collagenase-3) gene from fibroblastic cells directly adjacent to macrophages within silicotic rat lung granulomas. Conditioned medium from macrophages isolated from silicotic rat lungs was found to induce rat lung fibroblast interstitial collagenase gene expression. Conditioned medium from primary rat lung macrophages or J774 monocytic cells activated by particulates in vitro also induced interstitial collagenase gene expression. Tumor necrosis factor-α (TNF-α) alone did not induce interstitial collagenase expression in rat lung fibroblasts but did in rat skin fibroblasts, revealing tissue specificity in the regulation of this gene. The activity of the conditioned medium was found to be dependent on the combined effects of TNF-α and 12-lipoxygenase-derived arachidonic acid metabolites. The fibroblast response to this conditioned medium was dependent on de novo protein synthesis and involved the induction of nuclear activator protein-1 activity. These data reveal a novel requirement for macrophage-derived 12-lipoxygenase metabolites in lung fibroblast MMP induction and provide a mechanism for the induction of resident cell MMP gene expression during inflammatory lung processes.
Resumo:
A hybrid protein, tPA/GFP, consisting of rat tissue plasminogen activator (tPA) and green fluorescent protein (GFP) was expressed in PC12 cells and used to study the distribution, secretory behavior, and dynamics of secretory granules containing tPA in living cells with a neuronal phenotype. High-resolution images demonstrate that tPA/GFP has a growth cone-biased distribution in differentiated cells and that tPA/GFP is transported in granules of the regulated secretory pathway that colocalize with granules containing secretogranin II. Time-lapse images of secretion reveal that secretagogues induce substantial loss of cellular tPA/GFP fluorescence, most importantly from growth cones. Time-lapse images of the axonal transport of granules containing tPA/GFP reveal a surprising complexity to granule dynamics. Some granules undergo canonical fast axonal transport; others move somewhat more slowly, especially in highly fluorescent neurites. Most strikingly, granules traffic bidirectionally along neurites to an extent that depends on granule accumulation, and individual granules can reverse their direction of motion. The retrograde component of this bidirectional transport may help to maintain cellular homeostasis by transporting excess tPA/GFP back toward the cell body. The results presented here provide a novel view of the axonal transport of secretory granules. In addition, the results suggest that tPA is targeted for regulated secretion from growth cones of differentiated cells, strategically positioning tPA to degrade extracellular barriers or to activate other barrier-degrading proteases during axonal elongation.
Resumo:
Many pathogen recognition genes, such as plant R-genes, undergo rapid adaptive evolution, providing evidence that these genes play a critical role in plant-pathogen coevolution. Surprisingly, whether rapid adaptive evolution also occurs in genes encoding other kinds of plant defense proteins is unknown. Unlike recognition proteins, plant chitinases attack pathogens directly, conferring disease resistance by degrading chitin, a component of fungal cell walls. Here, we show that nonsynonymous substitution rates in plant class I chitinase often exceed synonymous rates in the plant genus Arabis (Cruciferae) and in other dicots, indicating a succession of adaptively driven amino acid replacements. We identify individual residues that are likely subject to positive selection by using codon substitution models and determine the location of these residues on the three-dimensional structure of class I chitinase. In contrast to primate lysozymes and plant class III chitinases, structural and functional relatives of class I chitinase, the adaptive replacements of class I chitinase occur disproportionately in the active site cleft. This highly unusual pattern of replacements suggests that fungi directly defend against chitinolytic activity through enzymatic inhibition or other forms of chemical resistance and identifies target residues for manipulating chitinolytic activity. These data also provide empirical evidence that plant defense proteins not involved in pathogen recognition also evolve in a manner consistent with rapid coevolutionary interactions.
Resumo:
Acute promyelocytic leukemia (APL) is associated with chromosomal translocations always involving the RARα gene, which variably fuses to one of several distinct loci, including PML or PLZF (X genes) in t(15;17) or t(11;17), respectively. APL in patients harboring t(15;17) responds well to retinoic acid (RA) treatment and chemotherapy, whereas t(11;17) APL responds poorly to both treatments, thus defining a distinct syndrome. Here, we show that RA, As2O3, and RA + As2O3 prolonged survival in either leukemic PML-RARα transgenic mice or nude mice transplanted with PML-RARα leukemic cells. RA + As2O3 prolonged survival compared with treatment with either drug alone. In contrast, neither in PLZF-RARα transgenic mice nor in nude mice transplanted with PLZF-RARα cells did any of the three regimens induce complete disease remission. Unexpectedly, therapeutic doses of RA and RA + As2O3 can induce, both in vivo and in vitro, the degradation of either PML-RARα or PLZF-RARα proteins, suggesting that the maintenance of the leukemic phenotype depends on the continuous presence of the former, but not the latter. Our findings lead to three major conclusions with relevant therapeutic implications: (i) the X-RARα oncoprotein directly determines response to treatment and plays a distinct role in the maintenance of the malignant phenotype; (ii) As2O3 and/or As2O3 + RA combination may be beneficial for the treatment of t(15;17) APL but not for t(11;17) APL; and (iii) therapeutic strategies aimed solely at degrading the X-RARα oncoprotein may not be effective in t(11;17) APL.
Resumo:
Fungi that cause brown rot of wood are essential biomass recyclers and also the principal agents of decay in wooden structures, but the extracellular mechanisms by which they degrade lignocellulose remain unknown. To test the hypothesis that brown-rot fungi use extracellular free radical oxidants as biodegradative tools, Gloeophyllum trabeum was examined for its ability to depolymerize an environmentally recalcitrant polyether, poly(ethylene oxide) (PEO), that cannot penetrate cell membranes. Analyses of degraded PEOs by gel permeation chromatography showed that the fungus cleaved PEO rapidly by an endo route. 13C NMR analyses of unlabeled and perdeuterated PEOs recovered from G. trabeum cultures showed that a major route for depolymerization was oxidative C—C bond cleavage, a reaction diagnostic for hydrogen abstraction from a PEO methylene group by a radical oxidant. Fenton reagent (Fe(II)/H2O2) oxidized PEO by the same route in vitro and therefore might account for PEO biodegradation if it is produced by the fungus, but the data do not rule out involvement of less reactive radicals. The reactivity and extrahyphal location of this PEO-degrading system suggest that its natural function is to participate in the brown rot of wood and that it may enable brown-rot fungi to degrade recalcitrant organopollutants.
Resumo:
Conflicts can occur between the principle of freedom of information treasured by librarians and ethical standards of scientific research involving the propriety of using data derived from immoral or dishonorable experimentation. A prime example of this conflict was brought to the attention of the medical and library communities in 1995 when articles claiming that the subjects of the illustrations in the classic anatomy atlas, Eduard Pernkopf's Topographische Anatomie des Menschen, were victims of the Nazi holocaust. While few have disputed the accuracy, artistic, or educational value of the Pernkopf atlas, some have argued that the use of such subjects violates standards of medical ethics involving inhuman and degrading treatment of subjects or disrespect of a human corpse. Efforts were made to remove the book from medical libraries. In this article, the history of the Pernkopf atlas and the controversy surrounding it are reviewed. The results of a survey of academic medical libraries concerning their treatment of the Pernkopf atlas are reported, and the ethical implications of these issues as they affect the responsibilities of librarians is discussed.
Resumo:
The actin cytoskeleton plays a significant role in changes of cell shape and motility, and interactions between the actin filaments and the cell membrane are crucial for a variety of cellular processes. Several adaptor proteins, including talin, maintain the cytoskeleton-membrane linkage by binding to integral membrane proteins and to the cytoskeleton. Layilin, a recently characterized transmembrane protein with homology to C-type lectins, is a membrane-binding site for talin in peripheral ruffles of spreading cells. To facilitate studies of layilin's function, we have generated a layilin-Fc fusion protein comprising the extracellular part of layilin joined to human immunoglobulin G heavy chain and used this chimera to identify layilin ligands. Here, we demonstrate that layilin-Fc fusion protein binds to hyaluronan immobilized to Sepharose. Microtiter plate-binding assays, coprecipitation experiments, and staining of sections predigested with different glycosaminoglycan-degrading enzymes and cell adhesion assays all revealed that layilin binds specifically to hyaluronan but not to other tested glycosaminoglycans. Layilin's ability to bind hyaluronan, a ubiquitous extracellular matrix component, reveals an interesting parallel between layilin and CD44, because both can bind to cytoskeleton-membrane linker proteins through their cytoplasmic domains and to hyaluronan through their extracellular domains. This parallelism suggests a role for layilin in cell adhesion and motility.
Resumo:
Ripening-associated pectin disassembly in melon is characterized by a decrease in molecular mass and an increase in the solubilization of polyuronide, modifications that in other fruit have been attributed to the activity of polygalacturonase (PG). Although it has been reported that PG activity is absent during melon fruit ripening, a mechanism for PG-independent pectin disassembly has not been positively identified. Here we provide evidence that pectin disassembly in melon (Cucumis melo) may be PG mediated. Three melon cDNA clones with significant homology to other cloned PGs were isolated from the rapidly ripening cultivar Charentais (C. melo cv Reticulatus F1 Alpha) and were expressed at high levels during fruit ripening. The expression pattern correlated temporally with an increase in pectin-degrading activity and a decrease in the molecular mass of cell wall pectins, suggesting that these genes encode functional PGs. MPG1 and MPG2 were closely related to peach fruit and tomato abscission zone PGs, and MPG3 was closely related to tomato fruit PG. MPG1, the most abundant melon PG mRNA, was expressed in Aspergillus oryzae. The culture filtrate exponentially decreased the viscosity of a pectin solution and catalyzed the linear release of reducing groups, suggesting that MPG1 encodes an endo-PG with the potential to depolymerize melon fruit cell wall pectin. Because MPG1 belongs to a group of PGs divergent from the well-characterized tomato fruit PG, this supports the involvement of a second class of PGs in fruit ripening-associated pectin disassembly.