8 resultados para Mesocellular foam
em National Center for Biotechnology Information - NCBI
Resumo:
Transcription of the macrophage scavenger receptor A gene is markedly upregulated during monocyte to macrophage differentiation. In these studies, we demonstrate that 291 bp of the proximal scavenger receptor promoter, in concert with a 400-bp upstream enhancer element, is sufficient to direct macrophage-specific expression of a human growth hormone reporter in transgenic mice. These regulatory elements, which contain binding sites for PU.1, AP-1, and cooperating ets-domain transcription factors, are also sufficient to mediate regulation of transgene expression during the in vitro differentiation of bone marrow progenitor cells in response to macrophage colony-stimulating factor. Mutation of the PU.1 binding site within the scavenger receptor promoter severely impairs transgene expression, consistent with a crucial role of PU.1 in regulating the expression of the scavenger receptor gene. The ability of the scavenger receptor promoter and enhancer to target gene expression to macrophages in vivo, including foam cells of atherosclerotic lesions, suggests that these regulatory elements will be of general utility in the study of macrophage differentiation and function by permitting specific modifications of macrophage gene expression.
Resumo:
The peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-dependent transcription factor that has been demonstrated to regulate fat cell development and glucose homeostasis. PPARγ is also expressed in a subset of macrophages and negatively regulates the expression of several proinflammatory genes in response to natural and synthetic ligands. We here demonstrate that PPARγ is expressed in macrophage foam cells of human atherosclerotic lesions, in a pattern that is highly correlated with that of oxidation-specific epitopes. Oxidized low density lipoprotein (oxLDL) and macrophage colony-stimulating factor, which are known to be present in atherosclerotic lesions, stimulated PPARγ expression in primary macrophages and monocytic cell lines. PPARγ mRNA expression was also induced in primary macrophages and THP-1 monocytic leukemia cells by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). Inhibition of protein kinase C blocked the induction of PPARγ expression by TPA, but not by oxLDL, suggesting that more than one signaling pathway regulates PPARγ expression in macrophages. TPA induced the expression of PPARγ in RAW 264.7 macrophages by increasing transcription from the PPARγ1 and PPARγ3 promoters. In concert, these observations provide insights into the regulation of PPARγ expression in activated macrophages and raise the possibility that PPARγ ligands may influence the progression of atherosclerosis.
Resumo:
We have previously identified a 94- to 97-kDa oxidized low density lipoprotein (LDL)-binding protein in mouse macrophages as macrosialin (MS), a member of the lamp family. Earlier immunostaining studies have shown that MS and its human homolog, CD68, are predominantly intracellular proteins. However, using sensitive techniques such as flow cytometry (FACS) and cell-surface-specific biotinylation, we now show that there is significant surface expression of these proteins. FACS analysis of intact cells using mAb FA/11 showed small but definite surface expression of MS in resident mouse peritoneal macrophages but this was greatly enhanced with thioglycollate elicitation. Biotinylation of intact cells and detergent-solubilized cell preparations followed by immunoprecipitation revealed 10–15% of the total MS content of elicited macrophages on the plasma membrane. Similar results were obtained with untreated RAW 264.7 cells. FACS analysis of intact THP-1 monocytic cells showed minimal surface expression of CD68 on unactivated cells (4% of total cell content). Stimulation with phorbol 12-myristate 13-acetate increased both surface and total CD68 expression considerably. Furthermore, the specific binding at 4°C and uptake at 37°C of 125I-labeled oxidized LDL by activated THP-1 cells was inhibited by 30–50% by CD68 mAbs KP-1 and EBM-11. Thus, although the surface expression of MS/CD68 at steady-state represents only a small percentage of their total cellular content, these proteins can play a significant role in oxidized LDL uptake by activated macrophages in vitro and could contribute to foam cell formation in atherosclerotic lesions.
Resumo:
We extend and apply theories of filled foam elasticity and failure to recently available data on foods. The predictions of elastic modulus and failure mode dependence on internal pressure and on wall integrity are borne out by photographic evidence of distortion and failure under compressive loading and under the localized stress applied by a knife blade, and by mechanical data on vegetables differing only in their turgor pressure. We calculate the dry modulus of plate-like cellular solids and the cross over between dry-like and fully fluid-filled elastic response. The bulk elastic properties of limp and aging cellular solids are calculated for model systems and compared with our mechanical data, which also show two regimes of response. The mechanics of an aged, limp beam is calculated, thus offering a practical procedure for comparing experiment and theory. This investigation also thereby offers explanations of the connection between turgor pressure and crispness and limpness of cellular materials.
Resumo:
Inflammation plays a critical role in atherogenesis, yet the mediators linking inflammation to specific atherogenic processes remain to be elucidated. One such mediator may be secretory sphingomyelinase (S-SMase), a product of the acid sphingomyelinase gene. The secretion of S-SMase by cultured endothelial cells is induced by inflammatory cytokines, and in vivo data have implicated S-SMase in subendothelial lipoprotein aggregation, macrophage foam cell formation, and possibly other atherogenic processes. Thus, the goal of this study was to seek evidence for S-SMase regulation in vivo during a physiologically relevant inflammatory response. First, wild-type mice were injected with saline or lipopolysaccharide (LPS) as a model of acute systemic inflammation. Serum S-SMase activity 3 h postinjection was increased 2- to 2.5-fold by LPS (P < 0.01). To determine the role of IL-1 in the LPS response, we used IL-1 converting enzyme knockout mice, which exhibit deficient IL-1 bioactivity. The level of serum S-SMase activity in LPS-injected IL-1 converting enzyme knockout mice was ≈35% less than that in identically treated wild-type mice (P < 0.01). In LPS-injected IL-1-receptor antagonist knockout mice, which have an enhanced response to IL-1, serum S-SMase activity was increased 1.8-fold compared with LPS-injected wild-type mice (P < 0.01). Finally, when wild-type mice were injected directly with IL-1β, tumor necrosis factor α, or both, serum S-SMase activity increased 1.6-, 2.3-, and 2.9-fold, respectively (P < 0.01). These data show regulation of S-SMase activity in vivo and they raise the possibility that local stimulation of S-SMase may contribute to the effects of inflammatory cytokines in atherosclerosis.
Resumo:
A hypoxic/anoxic microenvironment has been proposed to exist within a vascular lesion due to intimal or medial cell proliferation in vascular diseases. Here, we examined whether hypoxia alters macrophage function by exposing murine macrophage-like RAW 264.7 (RAW) cells to hypoxia (2% O2). When cells were exposed to hypoxia, a significant number of RAW cells underwent apoptosis. Additionally, small subpopulations of RAW cells were resistant to hypoxia-induced apoptosis. Through repeated cycles of hypoxia exposure, hypoxia-induced apoptosis-resistant macrophages (HARMs) were selected; HARM cells demonstrate >70% resistance to hypoxia-induced apoptosis, as compared with the parental RAW cells. When heat shock protein (HSP) expression was examined after hypoxia, we observed a significant decrease in constitutive heat shock protein 70 (HSC 70) in RAW cells, but not in HARMs, as compared with the control normoxic condition (21% O2). In contrast, the expression level of glucose-regulated protein 78 (GRP 78) in RAW and HARM cells after hypoxia treatment was not altered, suggesting that HSC 70 and not GRP 78 may play a role in protection against hypoxia-induced apoptosis. When tumor necrosis factor α (TNF-α) production was examined after hypoxic treatment, a significant increase in TNF-α production in HARM but decrease in RAW was observed, as compared with cells cultured in normoxic conditions. HARM cells also exhibit a much lower level of modified-LDL uptake than do RAW cells, suggesting that HARMs may not transform into foam cells. These results suggest that a selective population of macrophages may adapt to potentially pathological hypoxic conditions by overcoming the apoptotic signal.
Resumo:
The transport of solutes between blood and brain is regulated by a specific barrier. Capillary endothelial cells of brain are known to mediate barrier function and facilitate transport. Here we report that specific cells surrounding arterioles, known as Mato's fluorescent granular perithelial (FGP) cells or perivascular microglial cells, contribute to the barrier function. Immunohistochemical and in situ hybridization studies indicate that, in normal brain cortex, type I and type II macrophage scavenger receptors are expressed only in FGP/perivascular microglial cells, and surface markers of macrophage lineage are also detected on them. These cells mediate the uptake of macromolecules, including modified low density lipoprotein, horseradish peroxidase, and ferritin injected either into the blood or into the cerebral ventricles. Accumulation of scavenged materials with aging or after the administration of a high-fat diet results in the formation of honeycomb-like foam cells and the narrowing of the lumen of arterioles in the brain cortex. These results indicate involvement of FGP/perivascular microglial cells in the barrier and scavenger functions in the central nervous system.
Resumo:
To develop a murine model system to test the role of monocyte-derived macrophage in atherosclerosis, the osteopetrotic (op) mutation in the macrophage colony-stimulating factor gene was bred onto the apolipoprotein E (apoE)-deficient background. The doubly mutant (op/apoE-deficient) mice fed a low-fat chow diet had significantly smaller proximal aortic lesions at an earlier stage of progression than their apoE-deficient control littermates. These lesions in the doubly mutant mice were composed of macrophage foam cells. The op/apoE-deficient mice also had decreased body weights, decreased blood monocyte differentials, and increased mean cholesterol levels of approximately 1300 mg/dl. Statistical analysis determined that atherosclerosis lesion area was significantly affected by the op genotype and gender. The confounding variables of body weight, plasma cholesterol, and monocyte differential, which were all affected by op genotype, had no significant additional effect on lesion area once they were adjusted for the effects of op genotype and gender. Unexpectedly, there was a significant inverse correlation between plasma cholesterol and lesion area, implying that each may be the result of a common effect of macrophage colony-stimulating factor levels. The data support the hypothesis that macrophage colony-stimulating factor and its effects on macrophage development and function play a key role in atherogenesis.