2 resultados para Medial preoptic area

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Prostaglandin D2 (PGD2) is an extensively studied sleep-promoting substance, but the neuroanatomical basis of PGD2-induced sleep is only partially understood. To determine potential regions involved in this response, we used Fos immunohistochemistry to identify neurons activated by infusion of PGD2 into the subarachnoid space below the rostral basal forebrain. PGD2 increased nonrapid eye movement sleep and induced striking expression of Fos in the ventrolateral preoptic area (VLPO), a cluster of neurons that may promote sleep by inhibiting the tuberomammillary nucleus, the source of the ascending histaminergic arousal system. Fos expression in the VLPO was positively correlated with the preceding amount of sleep and negatively correlated with Fos expression in the tuberomammillary nucleus. PGD2 also increased Fos immunoreactivity in the basal leptomeninges and several regions implicated in autonomic regulation. These observations suggest that PGD2 may induce sleep via leptomeningeal PGD2 receptors with subsequent activation of the VLPO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two motor areas are known to exist in the medial frontal lobe of the cerebral cortex of primates, the supplementary motor area (SMA) and the presupplementary motor area (pre-SMA). We report here on an aspect of cellular activity that characterizes the pre-SMA. Monkeys were trained to perform three different movements sequentially in a temporal order. The correct order was planned on the basis of visual information before its execution. A group of pre-SMA cells (n = 64, 25%) were active during a process when monkeys were required to discard a current motor plan and develop a plan appropriate for the next orderly movements. Such activity was not common in the SMA and not found in the primary motor cortex. Our data suggest a role of pre-SMA cells in updating motor plans for subsequent temporally ordered movements.