2 resultados para Mean-variance analysis
em National Center for Biotechnology Information - NCBI
Resumo:
The neuronal nicotinic synapse in tissue slices of the adrenal medulla was studied with whole-cell patch-clamp. Excitatory postsynaptic currents (EPSCs) were evoked by local field stimulation or occurred spontaneously especially when external [K+] was increased. EPSCs were carried by channels sharing biophysical and pharmacological properties of neuronal-type nicotinic receptors (nAChRs). A single-channel conductance (gamma) of 43-45 pS was found from nonstationary variance analysis of EPSCs. Spontaneous EPSCs were tetrodotoxin-insensitive and Ca(2+)-dependent and occurred in burst-like clusters. Quantal analysis of spontaneous EPSCs gave a quantal size of 20 pA and amplitude histograms were well described by binomial models with low values of quantal content, consistent with a small number of spontaneously active release sites. However, rare large amplitude EPSCs suggest that the total number of sites is higher and that extrajunctional receptors are involved. Our estimates of quantal content and size at the chromaffin cell neuronal nicotinic synapse may be useful in characterizing central neuronal-type nicotinic receptor-mediated cholinergic synaptic transmission.
Resumo:
We measured the dependence of the variance in the rotation rate of tethered cells of Escherichia coli on the mean rotation rate over a regime in which the motor generates constant torque. This dependence was compared with that of broken motors. In either case, motor torque was augmented with externally applied torque. We show that, in contrast to broken motors, functioning motors in this regime do not freely rotationally diffuse and that the variance measurements are consistent with the predicted values of a stepping mechanism with exponentially distributed waiting times (a Poisson stepper) that steps approximately 400 times per revolution.