9 resultados para Maximum independent set
em National Center for Biotechnology Information - NCBI
Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis
Resumo:
Higher plant reproduction is unique because two cells are fertilized in the haploid female gametophyte. Egg and sperm nuclei fuse to form the embryo. A second sperm nucleus fuses with the central cell nucleus that replicates to generate the endosperm, a tissue that supports embryo development. To understand mechanisms that initiate reproduction, we isolated a mutation in Arabidopsis, f644, that allows for replication of the central cell and subsequent endosperm development without fertilization. When mutant f644 egg and central cells are fertilized by wild-type sperm, embryo development is inhibited, and endosperm is overproduced. By using a map-based strategy, we cloned and sequenced the F644 gene and showed that it encodes a SET-domain polycomb protein. Subsequently, we found that F644 is identical to MEDEA (MEA), a gene whose maternal-derived allele is required for embryogenesis [Grossniklaus, U., Vielle-Calzada, J.-P., Hoeppner, M. A. & Gagliano, W. B. (1998) Science 280, 446–450]. Together, these results reveal functions for plant polycomb proteins in the suppression of central cell proliferation and endosperm development. We discuss models to explain how polycomb proteins function to suppress endosperm and promote embryo development.
Resumo:
Snf, encoded by sans fille, is the Drosophila homolog of mammalian U1A and U2B′′ and is an integral component of U1 and U2 small nuclear ribonucleoprotein particles (snRNPs). Surprisingly, changes in the level of this housekeeping protein can specifically affect autoregulatory activity of the RNA-binding protein Sex-lethal (Sxl) in an action that we infer must be physically separate from Snf’s functioning within snRNPs. Sxl is a master switch gene that controls its own pre-mRNA splicing as well as splicing for subordinate switch genes that regulate sex determination and dosage compensation. Exploiting an unusual new set of mutant Sxl alleles in an in vivo assay, we show that Snf is rate-limiting for Sxl autoregulation when Sxl levels are low. In such situations, increasing either maternal or zygotic snf+ dose enhances the positive autoregulatory activity of Sxl for Sxl somatic pre-mRNA splicing without affecting Sxl activities toward its other RNA targets. In contrast, increasing the dose of genes encoding either the integral U1 snRNP protein U1-70k, or the integral U2 snRNP protein SF3a60, has no effect. Increased snf+ enhances Sxl autoregulation even when U1-70k and SF3a60 are reduced by mutation to levels that, in the case of SF3a60, demonstrably interfere with Sxl autoregulation. The observation that increased snf+ does not suppress other phenotypes associated with mutations that reduce U1-70k or SF3a60 is additional evidence that snf+ dose effects are not caused by increased snRNP levels. Mammalian U1A protein, like Snf, has a snRNP-independent function.
Resumo:
Fast neurotransmission requires that docked synaptic vesicles be located near the presynaptic N-type or P/Q-type calcium channels. Specific protein–protein interactions between a synaptic protein interaction (synprint) site on N-type and P/Q-type channels and the presynaptic SNARE proteins syntaxin, SNAP-25, and synaptotagmin are required for efficient, synchronous neurotransmitter release. Interaction of the synprint site of N-type calcium channels with syntaxin and SNAP-25 has a biphasic calcium dependence with maximal binding at 10–20 μM. We report here that the synprint sites of the BI and rbA isoforms of the α1A subunit of P/Q-type Ca2+ channels have different patterns of interactions with synaptic proteins. The BI isoform of α1A specifically interacts with syntaxin, SNAP-25, and synaptotagmin independent of Ca2+ concentration and binds with high affinity to the C2B domain of synaptotagmin but not the C2A domain. The rbA isoform of α1A interacts specifically with synaptotagmin and SNAP-25 but not with syntaxin. Binding of synaptotagmin to the rbA isoform of α1A is Ca2+-dependent, with maximum affinity at 10–20 μM Ca2+. Although the rbA isoform of α1A binds well to both the C2A and C2B domains of synaptotagmin, only the interaction with the C2A domain is Ca2+-dependent. These differential, Ca2+-dependent interactions of Ca2+ channel synprint sites with SNARE proteins may modulate the efficiency of transmitter release triggered by Ca2+ influx through these channels.
Resumo:
sqv (squashed vulva) genes comprise a set of eight independent loci in Caenorhabditis elegans required zygotically for the invagination of vulval epithelial cells and maternally for normal oocyte formation and embryogenesis. Sequencing of sqv-3, sqv-7, and sqv-8 suggested a role for the encoded proteins in glycolipid or glycoprotein biosynthesis. Using a combination of in vitro analysis of SQV enzymatic activities, sqv+-mediated rescue of vertebrate cell lines, and biochemical characterization of sqv mutants, we show that sqv-3, -7, and -8 all affect the biosynthesis of glycosaminoglycans and therefore compromise the function of one specific class of glycoconjugates, proteoglycans. These findings establish the importance of proteoglycans and their associated glycosaminoglycans in epithelial morphogenesis and patterning during C. elegans development.
Resumo:
Functional anatomical and single-unit recording studies indicate that a set of neural signals in parietal and frontal cortex mediates the covert allocation of attention to visual locations, as originally proposed by psychological studies. This frontoparietal network is the source of a location bias that interacts with extrastriate regions of the ventral visual system during object analysis to enhance visual processing. The frontoparietal network is not exclusively related to visual attention, but may coincide or overlap with regions involved in oculomotor processing. The relationship between attention and eye movement processes is discussed at the psychological, functional anatomical, and cellular level of analysis.
Resumo:
In both animal and plant acyl elongation systems, it has been proposed that fatty acids are first activated to acyl-coenzyme A (CoA) before their elongation, and that the ATP dependence of fatty acid elongation is evidence of acyl-CoA synthetase involvement. However, because CoA is not supplied in standard fatty acid elongation assays, it is not clear if CoA-dependent acyl-CoA synthetase activity can provide levels of acyl-CoAs necessary to support typical rates of fatty acid elongation. Therefore, we examined the role of acyl-CoA synthetase in providing the primer for acyl elongation in leek (Allium porrum L.) epidermal microsomes and Brassica napus L. cv Reston oil bodies. As presented here, fatty acid elongation was independent of CoA and proceeded at maximum rates with CoA-free preparations of malonyl-CoA. We also showed that stearic acid ([1-14C]18:0)-CoA was synthesized from [1-14C]18:0 in the presence of CoA-free malonyl-CoA or acetyl-CoA, and that [1-14C]18:0-CoA synthesis under these conditions was ATP dependent. Furthermore, the appearance of [1-14C]18:0 in the acyl-CoA fraction was simultaneous with its appearance in phosphatidylcholine. These data, together with the s of a previous study (A. Hlousek-Radojcic, H. Imai, J.G. Jaworski [1995] Plant J 8: 803–809) showing that exogenous [14C]acyl-CoAs are diluted by a relatively large endogenous pool before they are elongated, strongly indicated that acyl-CoA synthetase did not play a direct role in fatty acid elongation, and that phosphatidylcholine or another glycerolipid was a more likely source of elongation primers than acyl-CoAs.
Resumo:
Arbuscular mycorrhizal (AM) fungi (Order Glomales, Class Zygomycetes) are a diverse group of soil fungi that form mutualistic associations with the roots of most species of higher plants. Despite intensive study over the past 25 years, the phylogenetic relationships among AM fungi, and thus many details of evolution of the symbiosis, remain unclear. Cladistic analysis was performed on fatty acid methyl ester (FAME) profiles of 15 species in Gigaspora and Scutellospora (family Gigasporaceae) by using a restricted maximum likelihood approach of continuous character data. Results were compared to a parsimony analysis of spore morphological characters of the same species. Only one tree was generated from each character set. Morphological and developmental data suggest that species with the simplest spore types are ancestral whereas those with complicated inner wall structures are derived. Spores of those species having a complex wall structure pass through stages of development identical to the mature stages of simpler spores, suggesting a pattern of classical Haeckelian recapitulation in evolution of spore characters. Analysis of FAME profiles supported this hypothesis when Glomus leptotichum was used as the outgroup. However, when Glomus etunicatum was chosen as the outgroup, the polarity of the entire tree was reversed. Our results suggest that FAME profiles contain useful information and provide independent criteria for generating phylogenetic hypotheses in AM fungi. The maximum likelihood approach to analyzing FAME profiles also may prove useful for many other groups of organisms in which profiles are empirically shown to be stable and heritable.
Resumo:
CD19 receptor is expressed at high levels on human B-lineage lymphoid cells and is physically associated with the Src protooncogene family protein-tyrosine kinase Lyn. Recent studies indicate that the membrane-associated CD19-Lyn receptor-enzyme complex plays a pivotal role for survival and clonogenicity of immature B-cell precursors from acute lymphoblastic leukemia patients, but its significance for mature B-lineage lymphoid cells (e.g., B-lineage lymphoma cells) is unknown. CD19-associated Lyn kinase can be selectively targeted and inhibited with B43-Gen, a CD19 receptor-specific immunoconjugate containing the naturally occurring protein-tyrosine kinase inhibitor genistein (Gen). We now present experimental evidence that targeting the membrane-associated CD19-Lyn complex in vitro with B43-Gen triggers rapid apoptotic cell death in highly radiation-resistant p53-Bax- Ramos-BT B-lineage lymphoma cells expressing high levels of Bcl-2 protein without affecting the Bcl-2 expression level. The therapeutic potential of this membrane-directed apoptosis induction strategy was examined in a scid mouse xenograft model of radiation-resistant high-grade human B-lineage lymphoma. Remarkably, in vivo treatment of scid mice challenged with an invariably fatal number of Ramos-BT cells with B43-Gen at a dose level < 1/10 the maximum tolerated dose resulted in 70% long-term event-free survival. Taken together, these results provide unprecedented evidence that the membrane-associated anti-apoptotic CD19-Lyn complex may be at least as important as Bcl-2/Bax ratio for survival of lymphoma cells.
Resumo:
Frequencies of meiotic configurations in cytogenetic stocks are dependent on chiasma frequencies in segments defined by centromeres, breakpoints, and telomeres. The expectation maximization algorithm is proposed as a general method to perform maximum likelihood estimations of the chiasma frequencies in the intervals between such locations. The estimates can be translated via mapping functions into genetic maps of cytogenetic landmarks. One set of observational data was analyzed to exemplify application of these methods, results of which were largely concordant with other comparable data. The method was also tested by Monte Carlo simulation of frequencies of meiotic configurations from a monotelodisomic translocation heterozygote, assuming six different sample sizes. The estimate averages were always close to the values given initially to the parameters. The maximum likelihood estimation procedures can be extended readily to other kinds of cytogenetic stocks and allow the pooling of diverse cytogenetic data to collectively estimate lengths of segments, arms, and chromosomes.