3 resultados para Maxillofacial prosthesis implantation

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leukemia inhibitory factor (LIF) expression in the uterus is essential for embryo implantation in mice. Here we describe the spatial and temporal regulation of LIF signaling in vivo by using tissues isolated from uteri on different days over the implantation period. During this time, LIF receptors are expressed predominantly in the luminal epithelium (LE) of the uterus. Isolated epithelium responds to LIF by phosphorylation and nuclear translocation of signal transducer and activator of transcription (Stat) 3, but not by an increase in mitogen-activated protein kinase levels. The related cytokines Il-6, ciliary neurotrophic factor, as well as epidermal growth factor, do not activate Stat3, although epidermal growth factor stimulates mitogen-activated protein kinase. In vivo Stat3 activation is induced by LIF alone, resulting in the localization of Stat3 specifically to the nuclei of the LE coinciding with the onset of uterine receptivity. The responsiveness of the LE to LIF is regulated temporally, with Stat activation being restricted to day 4 of pregnancy despite the presence of constant levels of LIF receptor throughout the preimplantation period. Uterine receptivity is therefore under dual control and is regulated by both the onset of LIF expression in the endometrial glands and the release from inhibition of receptor function in the LE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uterine expression of leukemia inhibitory factor (LIF) is essential for embryo implantation in the mouse. Here, we describe the expression of LIF, related members of this group of cytokines, oncostatin M and ciliary neurotrophic factor, and the LIF receptor beta and glycoprotein gp130 in normal human tissues and in the endometrium of fertile women. Our results show that LIF is the only one of these factors expressed at detectable levels in the endometrium of women of proven fertility. LIF expression is restricted to the endometrial glands during the secretory/postovulatory phase but is not present in the endometrium during the proliferative/preovulatory phase. The LIF receptor beta is expressed during the proliferative and secretory phases of the cycle and is restricted to the luminal epithelium. The associated signal-transducing component of the LIF receptor, gp130, is also expressed in both the luminal and glandular epithelium throughout the cycle. These results suggest that uterine expression of LIF in humans, like mice, may have a role in regulating embryo implantation, possibly through an autocrine/paracrine interaction between LIF and its receptor at the luminal epithelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously showed that estrogen receptor (ER) mRNA is present in preimplantation mouse embryos. The apparent synthesis of ER mRNA by the blastocyst at the time of implantation when estrogen is required was of special interest. A demonstration of the presence of ER protein would support the idea that estrogen can act directly on the embryo. The mouse embryo at the blastocyst stage is differentiated into two cell types, the trophectoderm and the inner cell mass. To determine whether ER mRNA is translated into ER protein and its cell-specific distribution, immunocytochemical analyses were performed in mouse blastocysts. ER protein was detected in all cell types of the normal, dormant, or activated blastocyst. To trace the fate of ER in these cell types, immunocytochemistry was performed in implanting blastocysts and early egg cylinder stage embryos developed in culture. Again, ER was detected in all cells of the implanting blastocyst. At the early egg cylinder stage, continued expression of ER was observed in cells derived from the inner cell mass or the trophoblast. In trophoblast giant cells, ER was concentrated in small regions of the nucleus, possibly the nucleoli, which was similar to that observed in dormant and activated blastocysts. The embryonic expression of ER at such early stages in a broad array of cells suggests that ER may have a general role during early development.