2 resultados para Mathematical formulation

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new mathematical model is proposed for the spreading of a liquid film on a solid surface. The model is based on the standard lubrication approximation for gently sloping films (with the no-slip condition for the fluid at the solid surface) in the major part of the film where it is not too thin. In the remaining and relatively small regions near the contact lines it is assumed that the so-called autonomy principle holds—i.e., given the material components, the external conditions, and the velocity of the contact lines along the surface, the behavior of the fluid is identical for all films. The resulting mathematical model is formulated as a free boundary problem for the classical fourth-order equation for the film thickness. A class of self-similar solutions to this free boundary problem is considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The classical problem of thermal explosion is modified so that the chemically active gas is not at rest but is flowing in a long cylindrical pipe. Up to a certain section the heat-conducting walls of the pipe are held at low temperature so that the reaction rate is small and there is no heat release; at that section the ambient temperature is increased and an exothermic reaction begins. The question is whether a slow reaction regime will be established or a thermal explosion will occur. The mathematical formulation of the problem is presented. It is shown that when the pipe radius is larger than a critical value, the solution of the new problem exists only up to a certain distance along the axis. The critical radius is determined by conditions in a problem with a uniform axial temperature. The loss of existence is interpreted as a thermal explosion; the critical distance is the safe reactor’s length. Both laminar and developed turbulent flow regimes are considered. In a computational experiment the loss of the existence appears as a divergence of a numerical procedure; numerical calculations reveal asymptotic scaling laws with simple powers for the critical distance.