3 resultados para Mass spectrometer
em National Center for Biotechnology Information - NCBI
Resumo:
Intact Escherichia coli ribosomes have been projected into the gas phase of a mass spectrometer by means of nanoflow electrospray techniques. Species with mass/charge ratios in excess of 20,000 were detected at the level of individual ions by using time-of-flight analysis. Once in the gas phase the stability of intact ribosomes was investigated and found to increase as a result of cross-linking ribosomal proteins to the rRNA. By lowering the Mg2+ concentration in solutions containing ribosomes the particles were found to dissociate into 30S and 50S subunits. The resolution of the charge states in the spectrum of the 30S subunit enabled its mass to be determined as 852,187 ± 3,918 Da, a value within 0.6% of that calculated from the individual proteins and the 16S RNA. Further dissociation into smaller macromolecular complexes and then individual proteins could be induced by subjecting the particles to increasingly energetic gas phase collisions. The ease with which proteins dissociated from the intact species was found to be related to their known interactions in the ribosome particle. The results show that emerging mass spectrometric techniques can be used to characterize a fully functional biological assembly as well as its isolated components.
Resumo:
Nanoflow electrospray ionization has been used to introduce intact Escherichia coli ribosomes into the ion source of a mass spectrometer. Mass spectra of remarkable quality result from a partial, but selective, dissociation of the particles within the mass spectrometer. Peaks in the spectra have been assigned to individual ribosomal proteins and to noncovalent complexes of up to five component proteins. The pattern of dissociation correlates strongly with predicted features of ribosomal protein–protein and protein–RNA interactions. The spectra allow the dynamics and state of folding of specific proteins to be investigated in the context of the intact ribosome. This study demonstrates a potentially general strategy to probe interactions within complex biological assemblies.
Resumo:
The binding stoichiometry of gene V protein from bacteriophage f1 to several oligonucleotides was studied using electrospray ionization-mass spectrometry (ESI-MS). Using mild mass spectrometer interface conditions that preserve noncovalent associations in solution, gene V protein was observed as dimer ions from a 10 mM NH4OAc solution. Addition of oligonucleotides resulted in formation of protein-oligonucleotide complexes with stoichiometry of approximately four nucleotides (nt) per protein monomer. A 16-mer oligonucleotide gave predominantly a 4:1 (protein monomer: oligonucleotide) complex while oligonucleotides shorter than 15 nt showed stoichiometries of 2:1. Stoichiometries and relative binding constants for a mixture of oligonucleotides were readily measured using mass spectrometry. The binding stoichiometry of the protein with the 16-mer oligonucleotide was measured independently using size-exclusion chromatography and the results were consistent with the mass spectrometric data. These results demonstrate, for the first time, the observation and stoichiometric measurement of protein-oligonucleotide complexes using ESI-MS. The sensitivity and high resolution of ESI-MS should make it a useful too] in the study of protein-DNA interactions.