20 resultados para Marlene Kandel

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

DsrA is an 87-nt untranslated RNA that regulates both the global transcriptional silencer and nucleoid protein H-NS and the stationary phase and stress response sigma factor RpoS (σs). We demonstrate that DsrA acts via specific RNA:RNA base pairing interactions at the hns locus to antagonize H-NS translation. We also give evidence that supports a role for RNA:RNA interactions at the rpoS locus to enhance RpoS translation. Negative regulation of hns by DsrA is achieved by the RNA:RNA interaction blocking translation of hns RNA. In contrast, results suggest that positive regulation of rpoS by DsrA occurs by formation of an RNA structure that activates a cis-acting translational operator. Sequences within DsrA complementary to three additional genes, argR, ilvIH, and rbsD, suggest that DsrA is a riboregulator of gene expression that acts coordinately via RNA:RNA interactions at multiple loci.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inteins are protein-splicing elements, most of which contain conserved sequence blocks that define a family of homing endonucleases. Like group I introns that encode such endonucleases, inteins are mobile genetic elements. Recent crystallography and computer modeling studies suggest that inteins consist of two structural domains that correspond to the endonuclease and the protein-splicing elements. To determine whether the bipartite structure of inteins is mirrored by the functional independence of the protein-splicing domain, the entire endonuclease component was deleted from the Mycobacterium tuberculosis recA intein. Guided by computer modeling studies, and taking advantage of genetic systems designed to monitor intein function, the 440-aa Mtu recA intein was reduced to a functional mini-intein of 137 aa. The accuracy of splicing of several mini-inteins was verified. This work not only substantiates structure predictions for intein function but also supports the hypothesis that, like group I introns, mobile inteins arose by an endonuclease gene invading a sequence encoding a small, functional splicing element.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuronal signaling requires that synaptic proteins be appropriately localized within the cell and regulated there. In mammalian neurons, polyribosomes are found not just in the cell body, but also in dendrites where they are concentrated within or beneath the dendritic spine. The α subunit of Ca2+-calmodulin-dependent protein kinase II (CaMKIIα) is one of only five mRNAs known to be present within the dendrites, as well as in the soma of neurons. This targeted subcellular localization of the mRNA for CaMKIIα provides a possible cell biological mechanism both for controlling the distribution of the cognate protein and for regulating independently the level of protein expression in individual dendritic spines. To characterize the cis-acting elements involved in the localization of dendritic mRNA we have produced two lines of transgenic mice in which the CaMKIIα promoter is used to drive the expression of a lacZ transcript, which either contains or lacks the 3′-untranslated region of the CaMKIIα gene. Although both lines of mice show expression in forebrain neurons that parallels the expression of the endogenous CaMKIIα gene, only the lacZ transcripts bearing the 3′-untranslated region are localized to dendrites. The β-galactosidase protein shows a variable level of expression along the dendritic shaft and within dendritic spines, which suggests that neurons can control the local biochemistry of the dendrite either through differential localization of the mRNA or variations in the translational efficiency at different sites along the dendrite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an attempt to improve behavioral memory, we devised a strategy to amplify the signal-to-noise ratio of the cAMP pathway, which plays a central role in hippocampal synaptic plasticity and behavioral memory. Multiple high-frequency trains of electrical stimulation induce long-lasting long-term potentiation, a form of synaptic strengthening in hippocampus that is greater in both magnitude and persistence than the short-lasting long-term potentiation generated by a single tetanic train. Studies using pharmacological inhibitors and genetic manipulations have shown that this difference in response depends on the activity of cAMP-dependent protein kinase A. Genetic studies have also indicated that protein kinase A and one of its target transcription factors, cAMP response element binding protein, are important in memory in vivo. These findings suggested that amplification of signals through the cAMP pathway might lower the threshold for generating long-lasting long-term potentiation and increase behavioral memory. We therefore examined the biochemical, physiological, and behavioral effects in mice of partial inhibition of a hippocampal cAMP phosphodiesterase. Concentrations of a type IV-specific phosphodiesterase inhibitor, rolipram, which had no significant effect on basal cAMP concentration, increased the cAMP response of hippocampal slices to stimulation with forskolin and induced persistent long-term potentiation in CA1 after a single tetanic train. In both young and aged mice, rolipram treatment before training increased long- but not short-term retention in freezing to context, a hippocampus-dependent memory task.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have isolated a novel cDNA, that appears to represent a new class of ion channels, by using the yeast two-hybrid system and the SH3 domain of the neural form of Src (N-src) as a bait. The encoded polypeptide, BCNG-1, is distantly related to cyclic nucleotide-gated channels and the voltage-gated channels, Eag and H-erg. BCNG-1 is expressed exclusively in the brain, as a glycosylated protein of ≈132 kDa. Immunohistochemical analysis indicates that BCNG-1 is preferentially expressed in specific subsets of neurons in the neocortex, hippocampus, and cerebellum, in particular pyramidal neurons and basket cells. Within individual neurons, the BCNG-1 protein is localized to either the dendrites or the axon terminals depending on the cell type. Southern blot analysis shows that several other BCNG-related sequences are present in the mouse genome, indicating the emergence of an entire subfamily of ion channel coding genes. These findings suggest the existence of a new type of ion channel, which is potentially able to modulate membrane excitability in the brain and could respond to regulation by cyclic nucleotides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a genome-wide characterization of mRNA transcript levels in yeast grown on the fatty acid oleate, determined using Serial Analysis of Gene Expression (SAGE). Comparison of this SAGE library with that reported for glucose grown cells revealed the dramatic adaptive response of yeast to a change in carbon source. A major fraction (>20%) of the 15,000 mRNA molecules in a yeast cell comprised differentially expressed transcripts, which were derived from only 2% of the total number of ∼6300 yeast genes. Most of the mRNAs that were differentially expressed code for enzymes or for other proteins participating in metabolism (e.g., metabolite transporters). In oleate-grown cells, this was exemplified by the huge increase of mRNAs encoding the peroxisomal β-oxidation enzymes required for degradation of fatty acids. The data provide evidence for the existence of redox shuttles across organellar membranes that involve peroxisomal, cytoplasmic, and mitochondrial enzymes. We also analyzed the mRNA profile of a mutant strain with deletions of the PIP2 and OAF1 genes, encoding transcription factors required for induction of genes encoding peroxisomal proteins. Induction of genes under the immediate control of these factors was abolished; other genes were up-regulated, indicating an adaptive response to the changed metabolism imposed by the genetic impairment. We describe a statistical method for analysis of data obtained by SAGE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Short-term behavioral sensitization of the gill-withdrawal reflex after tail stimuli in Aplysia leads to an enhancement of the connections between sensory and motor neurons of this reflex. Both behavioral sensitization and enhancement of the connection between sensory and motor neurons are importantly mediated by serotonin. Serotonin activates two types of receptors in the sensory neurons, one of which is coupled to the cAMP/protein kinase A (PKA) pathway and the other to the inositol triphosphate/protein kinase C (PKC) pathway. Here we describe a genetic approach to assessing the isolated contribution of the PKA pathway to short-term facilitation. We have cloned from Aplysia an octopamine receptor gene, Ap oa1, that couples selectively to the cAMP/PKA pathway. We have ectopically expressed this receptor in Aplysia sensory neurons of the pleural ganglia, where it is not normally expressed. Activation of this receptor by octopamine stimulates all four presynaptic events involved in short-term synaptic facilitation that are normally produced by serotonin: (i) membrane depolarization; (ii) increased membrane excitability; (iii) increased spike duration; and (iv) presynaptic facilitation. These results indicate that the cAMP/PKA pathway alone is sufficient to produce all the features of presynaptic facilitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hippocampal-based behavioral memories and hippocampal-based forms of synaptic plasticity, such as long-term potentiation, are divisible into short- and long-term phases, with the long-term phase requiring the synthesis of new proteins and mRNA for its persistence. By contrast, it is less clear whether long-term depression (LTD) can be divisible into phases. We here describe that in stable hippocampal organotypic cultures, LTD also is not a unitary event but a multiphase process. A prolonged stimulus of 900 stimuli spaced at 1 Hz for 15 min induces a late phase of LTD, which is protein- and mRNA synthesis-dependent. By contrast, a short train of the same 900 stimuli massed at 5 Hz for 3 min produces only a short-lasting LTD. This short-lasting LTD is capable of capturing late-phase LTD. The 5-Hz stimulus or the prolonged 1-Hz stimulus in the presence of protein synthesis inhibitors each can be transformed into an enduring late phase of depression when the prolonged stimulus is applied to another input in the same population of neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DsrA is an 87-nucleotide regulatory RNA of Escherichia coli that acts in trans by RNA–RNA interactions with two different mRNAs, hns and rpoS. DsrA has opposite effects on these transcriptional regulators. H-NS levels decrease, whereas RpoS (σs) levels increase. Here we show that DsrA enhances hns mRNA turnover yet stabilizes rpoS mRNA, either directly or via effects on translation. Computational and RNA footprinting approaches led to a refined structure for DsrA, and a model in which DsrA interacts with the hns mRNA start and stop codon regions to form a coaxial stack. Analogous bipartite interactions exist in eukaryotes, albeit with different regulatory consequences. In contrast, DsrA base pairs in discrete fashion with the rpoS RNA translational operator. Thus, different structural configurations for DsrA lead to opposite regulatory consequences for target RNAs.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The storage of long-term memory is associated with a cellular program of gene expression, altered protein synthesis, and the growth of new synaptic connections. Recent studies of a variety of memory processes, ranging in complexity from those produced by simple forms of implicit learning in invertebrates to those produced by more complex forms of explicit learning in mammals, suggest that part of the molecular switch required for consolidation of long-term memory is the activation of a cAMP-inducible cascade of genes and the recruitment of cAMP response element binding protein-related transcription factors. This conservation of steps in the mechanisms for learning-related synaptic plasticity suggests the possibility of a molecular biology of cognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We cloned a rat vascular chymase (RVCH) from smooth muscle cells (SMCs) that converts angiotensin I to II and is up-regulated in SMC from spontaneously hypertensive vs. normotensive rats. To determine whether increased activity of RVCH is sufficient to cause hypertension, transgenic mice were generated with targeted conditional expression of RVCH to SMC, with the use of the tetracycline-controlled transactivator (tTA). We confirmed conditional expression of RVCH by mRNA, protein, and chymase activity in the absence, but not in the presence, of dietary doxycycline. The systolic blood pressure (mmHg), measured by carotid artery cannulation at 10–12 weeks of age, was higher in tTA+/RVCH+ mice than in nonbinary transgenic littermates (136 ± 4 vs. 109 ± 3) (P < 0.05), as were the diastolic and mean pressures. Hypertension was completely reversed by doxycycline, suggesting a causal link with chymase expression. Medial thickening of mesenteric arteries from tTA+/RVCH+ mice vs. littermates (0.82 ± 0.1 vs. 0.42 ± 0.02) (P < 0.05) was associated with increased SMC proliferation, as judged by positive immunoreactivity, with the use of an antibody to the proliferating cell nuclear antigen. These structural changes were prevented by doxycycline. Perfusion myography of mesenteric arteries from tTA+/RVCH+ mice also revealed increased vasoconstriction in response to phenylephrine and impaired metacholine-induced vasodilatation when compared with littermate controls or with the doxycyline-treated group. Our studies suggest that up-regulation of this vascular chymase is sufficient to cause a hypertensive arteriopathy, and that RVCH may be a candidate gene and a therapeutic target in patients with high blood pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gene encoding tissue-type plasminogen activator (t-PA) is an immediate response gene, downstream from CREB-1 and other constitutively expressed transcription factors, which is induced in the hippocampus during the late phase of long-term potentiation (L-LTP). Mice in which the t-PA gene has been ablated (t-PA-/-) showed no gross anatomical, electrophysiological, sensory, or motor abnormalities but manifest a selective reduction in L-LTP in hippocampal slices in both the Schaffer collateral-CA1 and mossy fiber-CA3 pathways. t-PA-/- mice also exhibit reduced potentiation by cAMP analogs and D1/D5 agonists. By contrast, hippocampal-dependent learning and memory were not affected in these mice, whereas performance was impaired on two-way active avoidance, a striatum-dependent task. These results provide genetic evidence that t-PA is a downstream effector gene important for L-LTP and show that modest impairment of L-LTP in CA1 and CA3 does not result in hippocampus-dependent behavioral phenotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synapses of the hippocampal mossy fiber pathway exhibit several characteristic features, including a unique form of long-term potentiation that does not require activation of the N-methyl-D-aspartate receptor by glutamate, a complex postsynaptic architecture, and sprouting in response to seizures. However, these connections have proven difficult to study in hippocampal slices because of their relative paucity (<0.4%) compared to commissural-collateral synapses. To overcome this problem, we have developed a novel dissociated cell culture system in which we have enriched mossy fiber synapses by increasing the ratio of granule-to-pyramidal cells. As in vivo, mossy fiber connections are composed of large dynorphin A-positive varicosities contacting complex spines (but without a restricted localization). The elementary synaptic connections are glutamatergic, inhibited by dynorphin A, and exhibit N-methyl-D-aspartate-independent long-term potentiation. Thus, the simplicity and experimental accessibility of this enriched in vitro mossy fiber pathway provides a new perspective for studying nonassociative plasticity in the mammalian central nervous system.