3 resultados para Marine Ecosystems
em National Center for Biotechnology Information - NCBI
Resumo:
Molecular and immunological techniques were used to examine N2 fixation in a ubiquitous heterotrophic marine bacterium, the facultative anaerobic Vibrio natriegens. When batch cultures were shifted from aerobic N-replete to anaerobic N-deplete conditions, transcriptional and post-translational regulation of N2 fixation was observed. Levels of nifHDK mRNA encoding the nitrogenase enzyme were highest at 140 min postshift and undetectable between 6 and 9 h later. Immunologically determined levels of nitrogenase enzyme (Fe protein) were highest between 6 and 15 h postshift, and nitrogenase activity peaked between 6 and 9 h postshift, declining by a factor of 2 after 12-15 h. Unlike their regulation in cyanobacteria, Fe protein and nitrogenase activity were present when nifHDK mRNA was absent in V. natriegens, indicating that nitrogenase is stored and stable under anaerobic conditions. Both nifHDK mRNA and Fe protein disappeared within 40 min after cultures were shifted from N2-fixing conditions (anaerobic, N-deplete) to non- N2-fixing conditions (aerobic, N-enriched) but reappeared when shifted to conditions favoring N2 fixation. Thus, unlike other N2-fixing heterotrophic bacteria, nitrogenase must be resynthesized after aerobic exposure in V. natriegens. Immunological detection based on immunoblot (Western) analysis and immunogold labeling correlated positively with nitrogenase activity; no localization of nitrogenase was observed. Because V. natriegens continues to fix N2 for many hours after anaerobic induction, this species may play an important role in providing "new" nitrogen in marine ecosystems.
Resumo:
Humans transformed Western Atlantic coastal marine ecosystems before modern ecological investigations began. Paleoecological, archeological, and historical reconstructions demonstrate incredible losses of large vertebrates and oysters from the entire Atlantic coast. Untold millions of large fishes, sharks, sea turtles, and manatees were removed from the Caribbean in the 17th to 19th centuries. Recent collapses of reef corals and seagrasses are due ultimately to losses of these large consumers as much as to more recent changes in climate, eutrophication, or outbreaks of disease. Overfishing in the 19th century reduced vast beds of oysters in Chesapeake Bay and other estuaries to a few percent of pristine abundances and promoted eutrophication. Mechanized harvesting of bottom fishes like cod set off a series of trophic cascades that eliminated kelp forests and then brought them back again as fishers fished their way down food webs to small invertebrates. Lastly, but most pervasively, mechanized harvesting of the entire continental shelf decimated large, long-lived fishes and destroyed three-dimensional habitats built up by sessile corals, bryozoans, and sponges. The universal pattern of losses demonstrates that no coastal ecosystem is pristine and few wild fisheries are sustainable along the entire Western Atlantic coast. Reconstructions of ecosystems lost only a century or two ago demonstrate attainable goals of establishing large and effective marine reserves if society is willing to pay the costs. Historical reconstructions provide a new scientific framework for manipulative experiments at the ecosystem scale to explore the feasibility and benefits of protection of our living coastal resources.
Resumo:
The recent intensification of agriculture, and the prospects of future intensification, will have major detrimental impacts on the nonagricultural terrestrial and aquatic ecosystems of the world. The doubling of agricultural food production during the past 35 years was associated with a 6.87-fold increase in nitrogen fertilization, a 3.48-fold increase in phosphorus fertilization, a 1.68-fold increase in the amount of irrigated cropland, and a 1.1-fold increase in land in cultivation. Based on a simple linear extension of past trends, the anticipated next doubling of global food production would be associated with approximately 3-fold increases in nitrogen and phosphorus fertilization rates, a doubling of the irrigated land area, and an 18% increase in cropland. These projected changes would have dramatic impacts on the diversity, composition, and functioning of the remaining natural ecosystems of the world, and on their ability to provide society with a variety of essential ecosystem services. The largest impacts would be on freshwater and marine ecosystems, which would be greatly eutrophied by high rates of nitrogen and phosphorus release from agricultural fields. Aquatic nutrient eutrophication can lead to loss of biodiversity, outbreaks of nuisance species, shifts in the structure of food chains, and impairment of fisheries. Because of aerial redistribution of various forms of nitrogen, agricultural intensification also would eutrophy many natural terrestrial ecosystems and contribute to atmospheric accumulation of greenhouse gases. These detrimental environmental impacts of agriculture can be minimized only if there is much more efficient use and recycling of nitrogen and phosphorus in agroecosystems.