9 resultados para Mandibular Function Impairment Questionnaire

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The NOD (nonobese diabetic) mouse has been studied as an animal model for autoimmune insulin-dependent diabetes and Sjögren’s syndrome. NOD.Igμnull mice, which lack functional B lymphocytes, develop progressive histopathologic lesions of the submandibular and lachrymal glands similar to NOD mice, but in the absence of autoimmune insulitis and diabetes. Despite the focal appearance of T cells in salivary and lachrymal tissues, NOD.Igμnull mice fail to lose secretory function as determined by stimulation of the muscarinic/cholinergic receptor by the agonist pilocarpine, suggesting a role for B cell autoantibodies in mediating exocrine dryness. Infusion of purified serum IgG or F(ab′)2 fragments from parental NOD mice or human primary Sjögren’s syndrome patients, but not serum IgG from healthy controls, alters stimulated saliva production, an observation consistent with antibody binding to neural receptors. Furthermore, human patient IgG fractions competitively inhibited the binding of the muscarinic receptor agonist, [3H]quinuclidinyl benzilate, to salivary gland membranes. This autoantibody activity is lost after preadsorption with intact salivary cells. These findings indicate that autoantibodies play an important part in the functional impairment of secretory processes seen in connection with the autoimmune exocrinopathy of Sjögren’s syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glial-cell-line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor for adult nigral dopamine neurons in vivo. GDNF has both protective and restorative effects on the nigro-striatal dopaminergic (DA) system in animal models of Parkinson disease. Appropriate administration of this factor is essential for the success of its clinical application. Since it cannot cross the blood–brain barrier, a gene transfer method may be appropriate for delivery of the trophic factor to DA cells. We have constructed a recombinant adenovirus (Ad) encoding GDNF and injected it into rat striatum to make use of its ability to infect neurons and to be retrogradely transported by DA neurons. Ad-GDNF was found to drive production of large amounts of GDNF, as quantified by ELISA. The GDNF produced after gene transfer was biologically active: it increased the survival and differentiation of DA neurons in vitro. To test the efficacy of the Ad-mediated GDNF gene transfer in vivo, we used a progressive lesion model of Parkinson disease. Rats received injections unilaterally into their striatum first of Ad and then 6 days later of 6-hydroxydopamine. We found that mesencephalic nigral dopamine neurons of animals treated with the Ad-GDNF were protected, whereas those of animals treated with the Ad-β-galactosidase were not. This protection was associated with a difference in motor function: amphetamine-induced turning was much lower in animals that received the Ad-GDNF than in the animals that received Ad-β-galactosidase. This finding may have implications for the development of a treatment for Parkinson disease based on the use of neurotrophic factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human T lymphocytes have been shown to express inhibitory natural killer cell receptors (NKR), which can down-regulate T cell antigen receptor-mediated T cell function, including cytolytic activity. In the present study, we demonstrate that CD3+NKR+ cells can be identified in HIV-infected patients. HIV-specific cytolytic activity was analyzed in five patients in whom autologous lymphoblastoid B cell lines could be derived as a source of autologous target cells. Phytohemagglutinin-activated T cell populations that had been cultured in interleukin 2 displayed HIV-specific cytotoxic T lymphocyte (CTL) activity against HIV env, gag, pol, and nef in 3 of 5 patients. Addition of anti-NKR mAb of IgM isotype could increase the specific CTL activity. Moreover, in one additional patient, HIV-specific CTL activity was undetectable; however, after addition of anti-NKR mAb such CTL activity appeared de novo. Similar results were obtained by analysis of CD3+NKR+ clones derived from two patients. These data provide direct evidence that CD3+NKR+ cells may include antigen (HIV)-specific CTLs and that mAb-mediated masking of inhibitory NKR may revert the down-regulation of CTL function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serotonin systems have been implicated in the regulation of hippocampal function. Serotonin 5-HT2C receptors are widely expressed throughout the hippocampal formation, and these receptors have been proposed to modulate synaptic plasticity in the visual cortex. To assess the contribution of 5-HT2C receptors to the serotonergic regulation of hippocampal function, mice with a targeted 5-HT2C-receptor gene mutation were examined. An examination of long-term potentiation at each of four principal regions of the hippocampal formation revealed a selective impairment restricted to medial perforant path–dentate gyrus synapses of mutant mice. This deficit was accompanied by abnormal performance in behavioral assays associated with dentate gyrus function. 5-HT2C receptor mutants exhibited abnormal performance in the Morris water maze assay of spatial learning and reduced aversion to a novel environment. These deficits were selective and were not associated with a generalized learning deficit or with an impairment in the discrimination of spatial context. These results indicate that a genetic perturbation of serotonin receptor function can modulate dentate gyrus plasticity and that plasticity in this structure may contribute to neural mechanisms underlying hippocampus-dependent behaviors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the aging process, mammals lose up to a third of their skeletal muscle mass and strength. Although the mechanisms underlying this loss are not entirely understood, we attempted to moderate the loss by increasing the regenerative capacity of muscle. This involved the injection of a recombinant adeno-associated virus directing overexpression of insulin-like growth factor I (IGF-I) in differentiated muscle fibers. We demonstrate that the IGF-I expression promotes an average increase of 15% in muscle mass and a 14% increase in strength in young adult mice, and remarkably, prevents aging-related muscle changes in old adult mice, resulting in a 27% increase in strength as compared with uninjected old muscles. Muscle mass and fiber type distributions were maintained at levels similar to those in young adults. We propose that these effects are primarily due to stimulation of muscle regeneration via the activation of satellite cells by IGF-I. This supports the hypothesis that the primary cause of aging-related impairment of muscle function is a cumulative failure to repair damage sustained during muscle utilization. Our results suggest that gene transfer of IGF-I into muscle could form the basis of a human gene therapy for preventing the loss of muscle function associated with aging and may be of benefit in diseases where the rate of damage to skeletal muscle is accelerated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A threonine to isoleucine polymorphism at amino acid 164 in the fourth transmembrane spanning domain of the beta 2-adrenergic receptor (beta 2AR) is known to occur in the human population. The functional consequences of this polymorphism to catecholamine signaling in relevant cells or to end-organ responsiveness, however, are not known. To explore potential differences between the two receptors, site-directed mutagenesis was carried out to mimic the polymorphism. Transgenic FVB/N mice were then created overexpressing wild-type (wt) beta 2AR or the mutant Ile-164 receptor in a targeted manner in the heart using a murine alpha myosin heavy chain promoter. The functional properties of the two receptors were then assessed at the level of in vitro cardiac myocyte signaling and in vivo cardiac responses in intact animals. The expression levels of these receptors in the two lines chosen for study were approximately 1200 fmol/mg protein in cardiac membranes, which represents a approximately 45-fold increase in expression over endogenous beta AR. Myocyte membrane adenylyl cyclase activity in the basal state was significantly lower in the Ile-164 mice (19.5 +/- 2.7 pmol/min/mg) compared with wt beta 2AR mice (35.0 +/- 4.1 pmol/min/mg), as was the maximal isoproterenol-stimulated activity (49.8 +/- 7.8 versus 77.1 +/ 7.3 pmol/min/mg). In intact animals, resting heart rate (441 +/- 21 versus 534 +/- 17 bpm) and dP/dtmax (10,923 +/- 730 versus 15,308 +/- 471 mmHg/sec) were less in the Ile-164 mice as compared with wt beta 2AR mice. Similarly, the physiologic responses to infused isoproterenol were notably less in the mutant expressing mice. Indeed, these values, as well as other contractile parameters, were indistinguishable between Ile-164 mice and nontransgenic littermates. Taken together, these results demonstrate that the Ile-164 polymorphism is substantially dysfunctional in a relevant target tissue, as indicated by depressed receptor coupling to adenylyl cyclase in myocardial membranes and impaired receptor mediated cardiac function in vivo. Under normal homeostatic conditions or in circumstances where sympathetic responses are compromised due to diseased states, such as heart failure, this impairment may have important pathophysiologic consequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hypothesis that age-associated impairment of cognitive and motor functions is due to oxidative molecular damage was tested in the mouse. In a blind study, senescent mice (aged 22 months) were subjected to a battery of behavioral tests for motor and cognitive functions and subsequently assayed for oxidative molecular damage as assessed by protein carbonyl concentration in different regions of the brain. The degree of age-related impairment in each mouse was determined by comparison to a reference group of young mice (aged 4 months) tested concurrently on the behavioral battery. The age-related loss of ability to perform a spatial swim maze task was found to be positively correlated with oxidative molecular damage in the cerebral cortex, whereas age-related loss of motor coordination was correlated with oxidative molecular damage within the cerebellum. These results support the view that oxidative stress is a causal factor in brain senescence. Furthermore, the findings suggest that age-related declines of cognitive and motor performance progress independently, and involve oxidative molecular damage within different regions of the brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synapsin I, the most abundant of all neuronal phosphoproteins, is enriched in synaptic vesicles. It has been hypothesized to regulate synaptogenesis and neurotransmitter release from adult nerve terminals. The evidence for such roles has been highly suggestive but not compelling. To evaluate the possible involvement of synapsin I in synaptogenesis and in the function of adult synapses, we have generated synapsin I-deficient mice by homologous recombination. We report herein that outgrowth of predendritic neurites and of axons was severely retarded in the hippocampal neurons of embryonic synapsin I mutant mice. Furthermore, synapse formation was significantly delayed in these mutant neurons. These results indicate that synapsin I plays a role in regulation of axonogenesis and synaptogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synapsin I has been proposed to be involved in the modulation of neurotransmitter release by controlling the availability of synaptic vesicles for exocytosis. To further understand the role of synapsin I in the function of adult nerve terminals, we studied synapsin I-deficient mice generated by homologous recombination. The organization of synaptic vesicles at presynaptic terminals of synapsin I-deficient mice was markedly altered: densely packed vesicles were only present in a narrow rim at active zones, whereas the majority of vesicles were dispersed throughout the terminal area. This was in contrast to the organized vesicle clusters present in terminals of wild-type animals. Release of glutamate from nerve endings, induced by K+,4-aminopyridine, or a Ca2+ ionophore, was markedly decreased in synapsin I mutant mice. The recovery of synaptic transmission after depletion of neurotransmitter by high-frequency stimulation was greatly delayed. Finally, synapsin I-deficient mice exhibited a strikingly increased response to electrical stimulation, as measured by electrographic and behavioral seizures. These results provide strong support for the hypothesis that synapsin I plays a key role in the regulation of nerve terminal function in mature synapses.