57 resultados para Mandelic-acid complex

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

During protein synthesis, elongation factor G (EF-G) binds to the ribosome and promotes the step of translocation, a process in which tRNA moves from the A to the P site of the ribosome and the mRNA is advanced by one codon. By using three-dimensional cryo-electron microscopy, we have visualized EF-G in a ribosome–EF-G–GDP–fusidic acid complex. Fitting the crystal structure of EF-G–GDP into the cryo density map reveals a large conformational change mainly associated with domain IV, the domain that mimics the shape of the anticodon arm of the tRNA in the structurally homologous ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. The tip portion of this domain is found in a position that overlaps the anticodon arm of the A-site tRNA, whose position in the ribosome is known from a study of the pretranslocational complex, implying that EF-G displaces the A-site tRNA to the P site by physical interaction with the anticodon arm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To investigate the distribution of lipids through the Golgi complex, we analyzed the envelopes of several viruses that assemble in different subcompartments of the Golgi, as well as subcellular fractions. Our results indicate that each Golgi subcompartment has a distinct phospholipid composition due mainly to differences in the relative amounts of semilysobisphosphatidic acid (SLBPA), sphingomyelin, phosphatidylserine, and phosphatidylinositol. Interestingly, SLBPA is enriched in the adjacent Golgi networks compared with the Golgi stack, and this enrichment varies with cell type. The heterogeneous distribution of SLBPA through the Golgi complex suggests it may play an important role in the structure and/or function of this organelle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

After birth, most of insulin-like growth factor I and II (IGFs) circulate as a ternary complex formed by the association of IGF binding protein 3-IGF complexes with a serum protein called acid-labile subunit (ALS). ALS retains the IGF binding protein-3-IGF complexes in the vascular compartment and extends the t1/2 of IGFs in the circulation. Synthesis of ALS occurs mainly in liver after birth and is stimulated by growth hormone. To study the basis for this regulation, we cloned and characterized the mouse ALS gene. Comparison of genomic and cDNA sequences indicated that the gene is composed of two exons separated by a 1126-bp intron. Exon 1 encodes the first 5 amino acids of the signal peptide and contributes the first nucleotide of codon 6. Exon 2 contributes the last 2 nt of codon 6 and encodes the remaining 17 amino acids of the signal peptide as well as the 580 amino acids of the mature protein. The polyadenylylation signal, ATTAAA, is located 241 bp from the termination codon. The cDNA and genomic DNA diverge 16 bp downstream from this signal. Transcription initiation was mapped to 11 sites over a 140-bp TATA-less region. The DNA fragment extending from nt -805 to -11 (ATG, +1) directed basal and growth hormone-regulated expression of a luciferase reporter plasmid in the rat liver cell line H4-II-E. Finally, the ALS gene was mapped to mouse chromosome 17 by fluorescence in situ hybridization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The generation of transport vesicles at the endoplasmic reticulum (ER) depends on cytosolic proteins, which, in the form of subcomplexes (Sec23p/Sec24p; Sec13p/Sec31p) are recruited to the ER membrane by GTP-bound Sar1p and form the coat protein complex II (COPII). Using affinity chromatography and two-hybrid analyses, we found that the essential COPII component Sec24p, but not Sec23p, binds to the cis-Golgi syntaxin Sed5p. Sec24p/Sed5p interaction in vitro was not dependent on the presence of [Sar1p⋅GTP]. The binding of Sec24p to Sed5p is specific; none of the other seven yeast syntaxins bound to this COPII component. Whereas the interaction site of Sec23p is within the N-terminal half of the 926-aa-long Sec24p (amino acid residues 56–549), Sed5p binds to the N- and C-terminal halves of the protein. Destruction by mutagenesis of a potential zinc finger within the N-terminal half of Sec24p led to a nonfunctional protein that was still able to bind Sec23p and Sed5p. Sec24p/Sed5p binding might be relevant for cargo selection during transport-vesicle formation and/or for vesicle targeting to the cis-Golgi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three-dimensional structure of Corynebacterium 2,5-diketo-d-gluconic acid reductase A (2,5-DKGR A; EC 1.1.1.-), in complex with cofactor NADPH, has been solved by using x-ray crystallographic data to 2.1-Å resolution. This enzyme catalyzes stereospecific reduction of 2,5-diketo-d-gluconate (2,5-DKG) to 2-keto-l-gulonate. Thus the three-dimensional structure has now been solved for a prokaryotic example of the aldo–keto reductase superfamily. The details of the binding of the NADPH cofactor help to explain why 2,5-DKGR exhibits lower binding affinity for cofactor than the related human aldose reductase does. Furthermore, changes in the local loop structure near the cofactor suggest that 2,5-DKGR will not exhibit the biphasic cofactor binding characteristics observed in aldose reductase. Although the crystal structure does not include substrate, the two ordered water molecules present within the substrate-binding pocket are postulated to provide positional landmarks for the substrate 5-keto and 4-hydroxyl groups. The structural basis for several previously described active-site mutants of 2,5-DKGR A is also proposed. Recent research efforts have described a novel approach to the synthesis of l-ascorbate (vitamin C) by using a genetically engineered microorganism that is capable of synthesizing 2,5-DKG from glucose and subsequently is transformed with the gene for 2,5-DKGR. These modifications create a microorganism capable of direct production of 2-keto-l-gulonate from d-glucose, and the gulonate can subsequently be converted into vitamin C. In economic terms, vitamin C is the single most important specialty chemical manufactured in the world. Understanding the structural determinants of specificity, catalysis, and stability for 2,5-DKGR A is of substantial commercial interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skeletal formation is a fundamental element of body patterning and is strictly regulated both temporally and spatially by a variety of molecules. Among these, retinoic acid (RA) has been shown to be involved in normal skeletal development. However, its pleiotropic effects have caused difficulty in identifying its crucial target cells and molecular mechanisms for each effect. Development of cartilage primordia is an important process in defining the skeletal structures. To address the role of RA in skeletal formation, we have generated mice expressing a dominant-negative retinoic acid receptor (RAR) in chondrogenic cells by using the type II collagen α1 promoter, and we have analyzed their phenotypes. These mice exhibited small cartilage primordia during development and retarded skeletal formation in both embryonic and postnatal periods. They also showed selective degeneration in their cervical vertebrae combined with homeotic transformations, but not in their extremities. The cervical phenotypes are reminiscent of phenotypes involving homeobox genes. We found that the expression of Hoxa-4 was indeed reduced in the cartilage primordia of cervical vertebrae of embryonic day 12.5 embryos. These observations demonstrate that endogenous RA acts directly on chondrogenic cells to promote skeletal growth in both embryonic and growing periods, and it regulates the proper formation of cervical vertebrae. Furthermore, RA apparently specifies the identities of the cervical vertebrae through the regulation of homeobox genes in the chondrogenic cells. Great similarities of the phenotypes between our mice and reported RAR knockout mice revealed that chondrogenic cells are a principal RA target during complex cascades of skeletal development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distant relatives of major histocompatibility complex (MHC) class I molecules, human MICA and MICB, function as stress-induced antigens that are broadly recognized by intestinal epithelial γδ T cells. They may thus play a central role in the immune surveillance of damaged, infected, or otherwise stressed intestinal epithelial cells. However, the generality of this system in evolution and the mode of recognition of MICA and MICB are undefined. Analysis of cDNA sequences from various primate species defined translation products that are homologous to MICA and MICB. All of the MIC polypeptides have common characteristics, although they are extraordinarily diverse. The most notable alterations are several deletions and frequent amino acid substitutions in the putative α-helical regions of the α1α2 domains. However, the primate MIC molecules were expressed on the surfaces of normal and transfected cells. Moreover, despite their sharing of relatively few identical amino acids in potentially accessible regions of their α1α2 domains, they were recognized by diverse human intestinal epithelial γδ T cells that are restricted by MICA and MICB. Thus, MIC molecules represent a family of MHC proteins that are structurally diverse yet appear to be functionally conserved. The promiscuous mode of γδ T cell recognition of these antigens may be explained by their sharing of a single conserved interaction site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonobese diabetic (NOD) mice develop insulin-dependent diabetes mellitus due to autoimmune T lymphocyte-mediated destruction of pancreatic β cells. Although both major histocompatibility complex class I-restricted CD8+ and class II-restricted CD4+ T cell subsets are required, the specific role each subset plays in the pathogenic process is still unclear. Here we show that class I-dependent T cells are required for all but the terminal stages of autoimmune diabetes development. To characterize the diabetogenic CD8+ T cells responsible, we isolated and propagated in vitro CD8+ T cells from the earliest insulitic lesions of NOD mice. They were cytotoxic to NOD islet cells, restricted to H-2Kd, and showed a diverse T cell receptor β chain repertoire. In contrast, their α chain repertoire was more restricted, with a recurrent amino acid sequence motif in the complementarity-determining region 3 loop and a prevalence of Vα17 family members frequently joined to the Jα42 gene segment. These results suggest that a number of the CD8+ T cells participating in the initial phase of autoimmune β cell destruction recognize a common structural component of Kd/peptide complexes on pancreatic β cells, possibly a single peptide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally, the structure and properties of natural products have been determined by total synthesis and comparison with authentic samples. We have now applied this procedure to the first nonproteinaceous ion channel, isolated from bacterial plasma membranes, and consisting of a complex of poly(3-hydroxybutyrate) and calcium polyphosphate. To this end, we have now synthesized the 128-mer of hydroxybutanoic acid and prepared a complex with inorganic calcium polyphosphate (average 65-mer), which was incorporated into a planar lipid bilayer of synthetic phospholipids. We herewith present data that demonstrate unambiguously that the completely synthetic complex forms channels that are indistinguishable in their voltage-dependent conductance, in their selectivity for divalent cations, and in their blocking behavior (by La3+) from channels isolated from Escherichia coli. The implications of our finding for prebiotic chemistry, biochemistry, and biology are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The x-ray structure of a complex of sialic acid (Neu5Ac) with neuraminidase N9 subtype from A/tern/Australia/G70C/75 influenza virus at 4°C has revealed the location of a second Neu5Ac binding site on the surface of the enzyme. At 18°C, only the enzyme active site contains bound Neu5Ac. Neu5Ac binds in the second site in the chair conformation in a similar way to which it binds to hemagglutinin. The residues that interact with Neu5Ac at this second site are mostly conserved in avian strains, but not in human and swine strains, indicating that it has some as-yet-unknown biological function in birds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exocyst is a protein complex required for the late stages of secretion in yeast. Unlike the SNAREs (SNAP receptors), important secretory proteins that are broadly distributed on the target membrane, the exocyst is specifically located at sites of vesicle fusion. We have isolated cDNAs encoding the rexo70, rsec5, and rsec15 subunits of the mammalian complex. The amino acid sequences encoded by these genes are between 21% and 24% identical to their yeast homologs. All three genes are broadly expressed and multiple transcripts are observed for rexo70 and rsec15. Characterization of cDNAs encoding the 84-kDa subunit of the mammalian complex revealed a novel protein. mAbs were generated to the mammalian rsec6 subunit of the exocyst complex. rsec6 immunoreactivity is found in a punctate distribution at terminals of PC12 cell processes at or near sites of granule exocytosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cluster of differentiation antigen 4 (CD4), the T lymphocyte antigen receptor component and human immunodeficiency virus coreceptor, is down-modulated when cells are activated by antigen or phorbol esters. During down-modulation CD4 dissociates from p56lck, undergoes endocytosis through clathrin-coated pits, and is then sorted in early endosomes to late endocytic organelles where it is degraded. Previous studies have suggested that phosphorylation and a dileucine sequence are required for down-modulation. Using transfected HeLa cells, in which CD4 endocytosis can be studied in the absence of p56lck, we show that the dileucine sequence in the cytoplasmic domain is essential for clathrin-mediated CD4 endocytosis. However, this sequence is only functional as an endocytosis signal when neighboring serine residues are phosphorylated. Phosphoserine is required for rapid endocytosis because CD4 molecules in which the cytoplasmic domain serine residues are substituted with glutamic acid residues are not internalized efficiently. Using surface plasmon resonance, we show that CD4 peptides containing the dileucine sequence bind weakly to clathrin adaptor protein complexes 2 and 1. The affinity of this interaction is increased 350- to 700-fold when the peptides also contain phosphoserine residues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coiled bodies (CBs) in the amphibian oocyte nucleus are spherical structures up to 10 μm or more in diameter, much larger than their somatic counterparts, which rarely exceed 1 μm. Oocyte CBs may have smaller granules attached to their surface or embedded within them, which are identical in structure and composition to the many hundreds of B-snurposomes found free in the nucleoplasm. The matrix of the CBs contains the diagnostic protein p80-coilin, which is colocalized with the U7 small nuclear ribonucleoprotein (snRNP), whereas the attached and embedded B-snurposomes contain splicing snRNPs. A few of the 50–100 CBs in the oocyte nucleus are attached to lampbrush chromosomes at the histone gene loci. By coimmunoprecipitation we show that coilin and the U7 snRNP can form a weak but specific complex in the nucleoplasm, which is dependent on the special U7 Sm-binding site. Under the same conditions coilin does not associate with the U1 and U2 snRNPs. Coilin is a nucleic acid-binding protein, as shown by its interaction with single-stranded DNA and with poly r(U) and poly r(G). We suggest that an important function of coilin is to form a transient complex with the U7 snRNP and accompany it to the CBs. In the case of CBs attached to chromosomes at the histone gene loci, the U7 snRNP is thus brought close to the actual site of histone pre-mRNA transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The SHR3 gene of Saccharomyces cerevisiae encodes an integral membrane component of the endoplasmic reticulum (ER) with four membrane-spanning segments and a hydrophilic, cytoplasmically oriented carboxyl-terminal domain. Mutations in SHR3 specifically impede the transport of all 18 members of the amino acid permease (aap) gene family away from the ER. Shr3p does not itself exit the ER. Aaps fully integrate into the ER membrane and fold properly independently of Shr3p. Shr3p physically associates with the general aap Gap1p but not Sec61p, Gal2p, or Pma1p in a complex that can be purified from N-dodecylmaltoside-solubilized membranes. Pulse–chase experiments indicate that the Shr3p–Gap1p association is transient, a reflection of the exit of Gap1p from the ER. The ER-derived vesicle COPII coatomer components Sec13p, Sec23p, Sec24p, and Sec31p but not Sar1p bind Shr3p via interactions with its carboxyl-terminal domain. The mutant shr3-23p, a nonfunctional membrane-associated protein, is unable to associate with aaps but retains the capacity to bind COPII components. The overexpression of either Shr3p or shr3-23p partially suppresses the temperature-sensitive sec12-1 allele. These results are consistent with a model in which Shr3p acts as a packaging chaperone that initiates ER-derived transport vesicle formation in the proximity of aaps by facilitating the membrane association and assembly of COPII coatomer components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pichia pastoris PEX17 was cloned by complementation of a peroxisome-deficient strain obtained from a novel screen for mutants disrupted in the localization of a peroxisomal membrane protein (PMP) reporter. PEX17 encodes a 267-amino-acid protein with low identity (18%) to the previously characterized Saccharomyces cerevisiae Pex17p. Like ScPex17p, PpPex17p contains a putative transmembrane domain near the amino terminus and two carboxyl-terminal coiled-coil regions. PpPex17p behaves as an integral PMP with a cytosolic carboxyl-terminal domain. pex17Δ mutants accumulate peroxisomal matrix proteins and certain integral PMPs in the cytosol, suggesting a critical role for Pex17p in their localization. Peroxisome remnants were observed in the pex17Δ mutant by morphological and biochemical means, suggesting that Pex17p is not absolutely required for remnant formation. Yeast two-hybrid analysis demonstrated that the carboxyl terminus of Pex19p was required for interaction with Pex17p lacking the carboxyl-terminal coiled-coil domains. Biochemical evidence confirmed the interaction between Pex19p and Pex17p. Additionally, Pex17p cross-linked to components of the peroxisome targeting signal–receptor docking complex, which unexpectedly contained Pex3p. Our evidence suggests the existence of distinct subcomplexes that contain separable pools of Pex3p, Pex19p, Pex17p, Pex14p, and the peroxisome targeting signal receptors. These distinct pools may serve different purposes for the import of matrix proteins or PMPs.