20 resultados para Maintenance of fish
em National Center for Biotechnology Information - NCBI
Resumo:
The molecular mechanisms that coordinate cell morphogenesis with the cell cycle remain largely unknown. We have investigated this process in fission yeast where changes in polarized cell growth are coupled with cell cycle progression. The orb6 gene is required during interphase to maintain cell polarity and encodes a serine/threonine protein kinase, belonging to the myotonic dystrophy kinase/cot1/warts family. A decrease in Orb6 protein levels leads to loss of polarized cell shape and to mitotic advance, whereas an increase in Orb6 levels maintains polarized growth and delays mitosis by affecting the p34cdc2 mitotic kinase. Thus the Orb6 protein kinase coordinates maintenance of cell polarity during interphase with the onset of mitosis. orb6 interacts genetically with orb2, which encodes the Pak1/Shk1 protein kinase, a component of the Ras1 and Cdc42-dependent signaling pathway. Our results suggest that Orb6 may act downstream of Pak1/Shk1, forming part of a pathway coordinating cell morphogenesis with progression through the cell cycle.
Resumo:
Whether phytophagous insects can speciate in sympatry when they shift and adapt to new host plants is a controversial question. One essential requirement for sympatric speciation is that disruptive selection outweighs gene flow between insect populations using different host plants. Empirical support for host-related selection (i.e., fitness trade-offs) is scant, however. Here, we test for host-dependent selection acting on apple (Malus pumila)- and hawthorn (Crataegus spp.)-infesting races of Rhagoletis pomonella (Diptera: Tephritidae). In particular, we examine whether the earlier fruiting phenology of apple trees favors pupae in deeper states of diapause (or with slower metabolisms/development rates) in the apple fly race. By experimentally lengthening the time period preceding winter, we exposed hawthorn race pupae to environmental conditions typically faced by apple flies. This exposure induced a significant genetic response at six allozyme loci in surviving hawthorn fly adults toward allele frequencies found in the apple race. The sensitivity of hawthorn fly pupae to extended periods of warm weather therefore selects against hawthorn flies that infest apples and helps to maintain the genetic integrity of the apple race by counteracting gene flow from sympatric hawthorn populations. Our findings confirm that postzygotic reproductive isolation can evolve as a pleiotropic consequence of host-associated adaptation, a central tenet of nonallopatric speciation. They also suggest that one reason for the paucity of reported fitness trade-offs is a failure to consider adequately costs associated with coordinating an insect’s life cycle with the phenology of its host plant.
Resumo:
This study addresses the extent of divergence in the ascending somatosensory pathways of primates. Divergence of inputs from a particular body part at each successive synaptic step in these pathways results in a potential magnification of the representation of that body part in the somatosensory cortex, so that the representation can be expanded when peripheral input from other parts is lost, as in nerve lesions or amputations. Lesions of increasing size were placed in the representation of a finger in the ventral posterior thalamic nucleus (VPL) of macaque monkeys. After a survival period of 1–5 weeks, area 3b of the somatosensory cortex ipsilateral to the lesion was mapped physiologically, and the extent of the representation of the affected and adjacent fingers was determined. Lesions affecting less than 30% of the thalamic VPL nucleus were without effect upon the cortical representation of the finger whose thalamic representation was at the center of the lesion. Lesions affecting about 35% of the VPL nucleus resulted in a shrinkage of the cortical representation of the finger whose thalamic representation was lesioned, with concomitant expansion of the representations of adjacent fingers. Beyond 35–40%, the whole cortical representation of the hand became silent. These results suggest that divergence of brainstem and thalamocortical projections, although normally not expressed, are sufficiently great to maintain a representation after a major loss of inputs from the periphery. This is likely to be one mechanism of representational plasticity in the cerebral cortex.
Resumo:
Mob1p is an essential Saccharomyces cerevisiae protein, identified from a two-hybrid screen, that binds Mps1p, a protein kinase essential for spindle pole body duplication and mitotic checkpoint regulation. Mob1p contains no known structural motifs; however MOB1 is a member of a conserved gene family and shares sequence similarity with a nonessential yeast gene, MOB2. Mob1p is a phosphoprotein in vivo and a substrate for the Mps1p kinase in vitro. Conditional alleles of MOB1 cause a late nuclear division arrest at restrictive temperature. MOB1 exhibits genetic interaction with three other yeast genes required for the completion of mitosis, LTE1, CDC5, and CDC15 (the latter two encode essential protein kinases). Most haploid mutant mob1 strains also display a complete increase in ploidy at permissive temperature. The mechanism for the increase in ploidy may occur through MPS1 function. One mob1 strain, which maintains stable haploidy at both permissive and restrictive temperature, diploidizes at permissive temperature when combined with the mps1–1 mutation. Strains containing mob2Δ also display a complete increase in ploidy when combined with the mps1-1 mutation. Perhaps in addition to, or as part of, its essential function in late mitosis, MOB1 is required for a cell cycle reset function necessary for the initiation of the spindle pole body duplication.
Resumo:
ADP ribosylation factor (ARF) is thought to play a critical role in recruiting coatomer (COPI) to Golgi membranes to drive transport vesicle budding. Yeast strains harboring mutant COPI proteins exhibit defects in retrograde Golgi to endoplasmic reticulum protein transport and striking cargo-selective defects in anterograde endoplasmic reticulum to Golgi protein transport. To determine whether arf mutants exhibit similar phenotypes, the anterograde transport kinetics of multiple cargo proteins were examined in arf mutant cells, and, surprisingly, both COPI-dependent and COPI-independent cargo proteins exhibited comparable defects. Retrograde dilysine-mediated transport also appeared to be inefficient in the arf mutants, and coatomer mutants with no detectable anterograde transport defect exhibited a synthetic growth defect when combined with arf1Δ, supporting a role for ARF in retrograde transport. Remarkably, we found that early and medial Golgi glycosyltransferases localized to abnormally large ring-shaped structures. The endocytic marker FM4–64 also stained similar, but generally larger ring-shaped structures en route from the plasma membrane to the vacuole in arf mutants. Brefeldin A similarly perturbed endosome morphology and also inhibited transport of FM4–64 from endosomal structures to the vacuole. Electron microscopy of arf mutant cells revealed the presence of what appear to be hollow spheres of interconnected membrane tubules which likely correspond to the fluorescent ring structures. Together, these observations indicate that organelle morphology is significantly more affected than transport in the arf mutants, suggesting a fundamental role for ARF in regulating membrane dynamics. Possible mechanisms for producing this dramatic morphological change in intracellular organelles and its relation to the function of ARF in coat assembly are discussed.
Resumo:
Although membrane tubules can be found extending from, and associated with, the Golgi complex of eukaryotic cells, their physiological function has remained unclear. To gain insight into the biological significance of membrane tubules, we have developed methods for selectively preventing their formation. We show here that a broad range of phospholipase A2 (PLA2) antagonists not only arrest membrane tubule–mediated events that occur late in the assembly of the Golgi complex but also perturb its normal steady-state tubulovesicular architecture by inducing a reversible fragmentation into separate “mini-stacks.” In addition, we show that these same compounds prevent the formation of membrane tubules from Golgi stacks in an in vitro reconstitution system. This in vitro assay was further used to demonstrate that the relevant PLA2 activity originates from the cytoplasm. Taken together, these results demonstrate that Golgi membrane tubules, sensitive to potent and selective PLA2 antagonists, mediate both late events in the reassembly of the Golgi complex and the dynamic maintenance of its steady-state architecture. In addition, they implicate a role for cytoplasmic PLA2 enzymes in mediating these membrane trafficking events.
Resumo:
An improved mammalian two-hybrid system designed for interaction trap screening is described in this paper. CV-1/EBNA-1 monkey kidney epithelial cells expressing Epstein–Barr virus nuclear antigen 1 (EBNA-1) were stably transfected with a reporter plasmid for GAL4-dependent expression of the green fluorescent protein (GFP). A resulting clone, GB133, expressed GFP strongly when transfected transiently with transcriptional activators fused to GAL4 DNA-binding domain with minimal background GFP expression. GB133 cells maintained plasmids containing the OriP Epstein–Barr virus replication origin that directs replication of plasmids in mammalian cells in the presence of the EBNA-1 protein. GB133 cells transfected stably with a model bait expressed GFP when further transfected transiently with an expression plasmid for a known positive prey. When the bait-expressing GB133 cells were transfected transiently with an OriP-containing expression plasmid for the positive prey together with excess amounts of empty vector, cells that received the positive prey were readily identified by green fluorescence in cell culture and eventually formed green fluorescent microcolonies, because the prey plasmid was maintained by the EBNA-1/Ori-P system. The green fluorescent microcolonies were harvested directly from the culture dishes under a fluorescence microscope, and total DNA was then prepared. Prey-encoding cDNA was recovered by PCR using primers annealing to the vector sequences flanking the insert-cloning site. This system should be useful in mammalian cells for efficient screening of cDNA libraries by two-hybrid interaction.
Resumo:
The PKC1–MPK1 pathway in yeast functions in the maintenance of cell wall integrity and in the stress response. We have identified a family of genes that are putative regulators of this pathway. WSC1, WSC2, and WSC3 encode predicted integral membrane proteins with a conserved cysteine motif and a WSC1–green fluorescence protein fusion protein localizes to the plasma membrane. Deletion of WSC results in phenotypes similar to mutants in the PKC1–MPK1 pathway and an increase in the activity of MPK1 upon a mild heat treatment is impaired in a wscΔ mutant. Genetic analysis places the function of WSC upstream of PKC1, suggesting that they play a role in its activation. We also find a genetic interaction between WSC and the RAS–cAMP pathway. The RAS–cAMP pathway is required for cell cycle progression and for the heat shock response. Overexpression of WSC suppresses the heat shock sensitivity of a strain in which RAS is hyperactivated and the heat shock sensitivity of a wscΔ strain is rescued by deletion of RAS2. The functional characteristics and cellular localization of WSC suggest that they may mediate intracellular responses to environmental stress in yeast.
Resumo:
EBV-encoded nuclear antigen-1 (EBNA-1) binding to a cis-acting viral DNA element, oriP, enables plasmids to persist in dividing human cells as multicopy episomes that attach to chromosomes during mitosis. In investigating the significance of EBNA-1 binding to mitotic chromosomes, we identified the basic domains of EBNA-1 within amino acids 1–89 and 323–386 as critical for chromosome binding. In contrast, the EBNA-1 C terminus (amino acids 379–641), which includes the nuclear localization signal and DNA-binding domain, does not associate with mitotic chromosomes or retain oriP plasmid DNA in dividing cell nuclei, but does enable the accumulation of replicated oriP-containing plasmid DNA in transient replication assays. The importance of chromosome association in episome maintenance was evaluated by replacing EBNA-1 amino acids 1–378 with cell proteins that have similar chromosome binding characteristics. High-mobility group-I amino acids 1–90 or histone H1–2 could substitute for EBNA-1 amino acids 1–378 in mediating more efficient accumulation of replicated oriP plasmid, association with mitotic chromosomes, nuclear retention, and long-term episome persistence. These data strongly support the hypothesis that mitotic chromosome association is a critical factor for episome maintenance. The replacement of 60% of EBNA-1 with cell protein is a significant step toward eliminating the need for noncellular protein sequences in the maintenance of episomal DNA in human cells.
Resumo:
Caspase-3 is synthesized as a dormant proenzyme and is maintained in an inactive conformation by an Asp-Asp-Asp “safety-catch” regulatory tripeptide contained within a flexible loop near the large-subunit/small-subunit junction. Removal of this “safety catch” results in substantially enhanced autocatalytic maturation as well as increased vulnerability to proteolytic activation by upstream proteases in the apoptotic pathway such as caspase-9 and granzyme B. The safety catch functions through multiple ionic interactions that are disrupted by acidification, which occurs in the cytosol of cells during the early stages of apoptosis. We propose that the caspase-3 safety catch is a key regulatory checkpoint in the apoptotic cascade that regulates terminal events in the caspase cascade by modulating the triggering of caspase-3 activation.
Resumo:
T cell receptor (TCR) allelic exclusion is believed to be primarily mediated by suppression of further recombination at the TCR locus after the expression of a functional TCR protein. Genetic allelic exclusion has been shown to be leaky for the β chain and, more commonly, for the α chain. Here, we demonstrate an additional mechanism by which T cells can maintain monoclonality. T cells from double TCR transgenic mice express only one or the other of the two available TCRs at the cell surface. This “functional allelic exclusion” is apparently due to control of the TCR assembly process because these T cells express RNA and protein for all four transgenic TCR proteins. Lack of cell surface expression of the second TCR may be controlled by a failure to assemble the TCR heterodimer.
Resumo:
Hsk1, Saccharomyces cerevisiae Cdc7-related kinase in Shizosaccharomyces pombe, is required for G1/S transition and its kinase activity is controlled by the regulatory subunit Dfp1/Him1. Analyses of a newly isolated temperature-sensitive mutant, hsk1-89, reveal that Hsk1 plays crucial roles in DNA replication checkpoint signaling and maintenance of proper chromatin structures during mitotic S phase through regulating the functions of Rad3 (ATM)-Cds1 and Rad21 (cohesin), respectively, in addition to expected essential roles for initiation of mitotic DNA replication through phosphorylating Cdc19 (Mcm2). Checkpoint defect in hsk1-89 is indicated by accumulation of cut cells at 30°C. hsk1-89 displays synthetic lethality in combination with rad3 deletion, indicating that survival of hsk1-89 depends on Rad3-dependent checkpoint pathway. Cds1 kinase activation, which normally occurs in response to early S phase arrest by nucleotide deprivation, is largely impaired in hsk1-89. Furthermore, Cds1-dependent hyperphosphorylation of Dfp1 in response to hydroxyurea arrest is eliminated in hsk1-89, suggesting that sufficient activation of Hsk1-Dfp1 kinase is required for S phase entry and replication checkpoint signaling. hsk1-89 displays apparent defect in mitosis at 37°C leading to accumulation of cells with near 2C DNA content and with aberrant nuclear structures. These phenotypes are similar to those of rad21-K1 and are significantly enhanced in a hsk1-89 rad21-K1 double mutant. Consistent with essential roles of Rad21 as a component for the cohesin complex, sister chromatid cohesion is partially impaired in hsk1-89, suggesting a possibility that infrequent origin firing of the mutant may affect the cohesin functions during S phase.
Resumo:
Here we describe the first instances to our knowledge of animal virus genome replication, and of de novo synthesis of infectious virions by a nonendogenous virus, in the yeast Saccharomyces cerevisiae, whose versatile genetics offers significant advantages for studying viral replication and virus-host interactions. Flock house virus (FHV) is the most extensively studied member of the Nodaviridae family of (+) strand RNA animal viruses. Transfection of yeast with FHV genomic RNA induced viral RNA replication, transcription, and assembly of infectious virions. Genome replication and virus synthesis were robust: all replicating FHV RNA species were readily detected in yeast by Northern blot analysis and yields of virions per cell were similar to those from Drosophila cells. We also describe in vivo expression and maintenance of a selectable yeast marker gene from an engineered FHV RNA derivative dependent on FHV-directed RNA replication. Use of these approaches with FHV and their possible extension to other viruses should facilitate identification and characterization of host factors required for genomic replication, gene expression, and virion assembly.
Resumo:
During the induction of long-term potentiation (LTP) in hippocampal slices adenosine triphosphate (ATP) is secreted into the synaptic cleft, and a 48 kDa/50 kDa protein duplex becomes phosphorylated by extracellular ATP. All the criteria required as evidence that these two proteins serve as principal substrates of ecto-protein kinase activity on the surface of hippocampal pyramidal neurons have been fulfilled. This phosphorylation activity was detected on the surface of pyramidal neurons assayed after synaptogenesis, but not in immature neurons nor in glial cells. Addition to the extracellular medium of a monoclonal antibody termed mAb 1.9, directed to the catalytic domain of protein kinase C (PKC), inhibited selectively this surface protein phosphorylation activity and blocked the stabilization of LTP induced by high frequency stimulation (HFS) in hippocampal slices. This antibody did not interfere with routine synaptic transmission nor prevent the initial enhancement of synaptic responses observed during the 1-5 min period immediately after the application of HFS (the induction phase of LTP). However, the initial increase in the slope of excitatory postsynaptic potentials, as well as the elevated amplitude of the population spike induced by HFS, both declined gradually and returned to prestimulus values within 30-40 min after HFS was applied in the presence of mAb 1.9. A control antibody that binds to PKC but does not inhibit its activity had no effect on LTP. The selective inhibitory effects observed with mAb 1.9 provide the first direct evidence of a causal role for ecto-PK in the maintenance of stable LTP, an event implicated in the process of learning and the formation of memory in the brain.
Resumo:
We recently analyzed experimental studies of mammalian muscle glycogen synthesis using metabolic control analysis and concluded that glycogen synthase (GSase) does not control the glycogenic flux but rather adapts to the flux which is controlled bv the activity of the proximal glucose transport and hexokinase steps. This model did not provide a role for the well established relationship between GSase fractional activity, determined by covalent phosphorylation, and the rate of glycogen synthesis. Here we propose that the phosphorylation of GSase, which alters the sensitivity to allosteric activation by glucose 6-phosphate (G6P), is a mechanism for controlling the concentration of G6P instead of controlling the flux. When the muscle cell is exposed to conditions which favor glycogen synthesis such as high plasma insulin and glucose concentrations the fractional activity of GSase is increased in coordination with increases in the activity of glucose transport and hexokinase. This increase in GSase fractional activity helps to maintain G6P homeostasis by reducing the G6P concentration required to activate GSase allosterically to match the flux determined by the proximal reactions. This role for covalent phosphorylation also provides a novel solution to the Kacser and Acarenza paradigm which requires coordinated activity changes of the enzymes proximal and distal to a shared intermediate, to avoid unwanted flux changes.