16 resultados para Magnus II Haraldsson, king of Norway, d. 1069.
em National Center for Biotechnology Information - NCBI
Resumo:
Vitamin D, the major steroid hormone that controls mineral ion homeostasis, exerts its actions through the vitamin D receptor (VDR). The VDR is expressed in many tissues, including several tissues not thought to play a role in mineral metabolism. Studies in kindreds with VDR mutations (vitamin D-dependent rickets type II, VDDR II) have demonstrated hypocalcemia, hyperparathyroidism, rickets, and osteomalacia. Alopecia, which is not a feature of vitamin D deficiency, is seen in some kindreds. We have generated a mouse model of VDDR II by targeted ablation of the second zinc finger of the VDR DNA-binding domain. Despite known expression of the VDR in fetal life, homozygous mice are phenotypically normal at birth and demonstrate normal survival at least until 6 months. They become hypocalcemic at 21 days of age, at which time their parathyroid hormone (PTH) levels begin to rise. Hyperparathyroidism is accompanied by an increase in the size of the parathyroid gland as well as an increase in PTH mRNA levels. Rickets and osteomalacia are seen by day 35; however, as early as day 15, there is an expansion in the zone of hypertrophic chondrocytes in the growth plate. In contrast to animals made vitamin D deficient by dietary means, and like some patients with VDDR II, these mice develop progressive alopecia from the age of 4 weeks.
Resumo:
The generation of transport vesicles at the endoplasmic reticulum (ER) depends on cytosolic proteins, which, in the form of subcomplexes (Sec23p/Sec24p; Sec13p/Sec31p) are recruited to the ER membrane by GTP-bound Sar1p and form the coat protein complex II (COPII). Using affinity chromatography and two-hybrid analyses, we found that the essential COPII component Sec24p, but not Sec23p, binds to the cis-Golgi syntaxin Sed5p. Sec24p/Sed5p interaction in vitro was not dependent on the presence of [Sar1p⋅GTP]. The binding of Sec24p to Sed5p is specific; none of the other seven yeast syntaxins bound to this COPII component. Whereas the interaction site of Sec23p is within the N-terminal half of the 926-aa-long Sec24p (amino acid residues 56–549), Sed5p binds to the N- and C-terminal halves of the protein. Destruction by mutagenesis of a potential zinc finger within the N-terminal half of Sec24p led to a nonfunctional protein that was still able to bind Sec23p and Sed5p. Sec24p/Sed5p binding might be relevant for cargo selection during transport-vesicle formation and/or for vesicle targeting to the cis-Golgi.
Resumo:
Sensory rhodopsin II (SRII) is a repellent phototaxis receptor in the archaeon Halobacterium salinarum, similar to visual pigments in its seven-helix structure and linkage of retinal to the protein by a protonated Schiff base in helix G. Asp-73 in helix C is shown by spectroscopic analysis to be a counterion to the protonated Schiff base in the unphotolyzed SRII and to be the proton acceptor from the Schiff base during photoconversion to the receptor signaling state. Coexpression of the genes encoding mutated SRII with Asn substituted for Asp-73 (D73N) and the SRII transducer HtrII in H. salinarum cells results in a 3-fold higher swimming reversal frequency accompanied by demethylation of HtrII in the dark, showing that D73N SRII produces repellent signals in its unphotostimulated state. Analogous constitutive signaling has been shown to be produced by the similar neutral residue substitution of the Schiff base counterion and proton acceptor Glu-113 in human rod rhodopsin. The interpretation for both seven-helix receptors is that light activation of the wild-type protein is caused primarily by photoisomerization-induced transfer of the Schiff base proton on helix G to its primary carboxylate counterion on helix C. Therefore receptor activation by helix C–G salt-bridge disruption in the photoactive site is a general mechanism in retinylidene proteins spanning the vast evolutionary distance between archaea and humans.
Resumo:
The oligomerization of activated d- and l- and racemic guanosine-5′-phosphoro-2-methylimidazole on short templates containing d- and l-deoxycytidylate has been studied. Results obtained with d-oligo(dC)s as templates are similar to those previously reported for experiments with a poly(C) template. When one l-dC or two consecutive l-dCs are introduced into a d-template, regiospecific synthesis of 3′-5′ oligo(G)s proceeds to the end of the template, but three consecutive l-dCs block synthesis. Alternating d-,l-oligomers do not facilitate oligomerization of the d-, l-, and racemic 2-guanosine-5′-phosphoro-2-methylimidazole. We suggest that once a “predominately d-metabolism” existed, occasional l-residues in a template would not have led to the termination of self-replication.
Resumo:
Phospholipid signaling mediated by lipid-derived second messengers or biologically active lipids is still new and is not well established in plants. We recently have found that lysophosphatidylethanolamine (LPE), a naturally occurring lipid, retards senescence of leaves, flowers, and postharvest fruits. Phospholipase D (PLD) has been suggested as a key enzyme in mediating the degradation of membrane phospholipids during the early stages of plant senescence. Here we report that LPE inhibited the activity of partially purified cabbage PLD in a cell-free system in a highly specific manner. Inhibition of PLD by LPE was dose-dependent and increased with the length and unsaturation of the LPE acyl chain whereas individual molecular components of LPE such as ethanolamine and free fatty acid had no effect on PLD activity. Enzyme-kinetic analysis suggested noncompetitive inhibition of PLD by LPE. In comparison, the related lysophospholipids such as lysophosphatidylcholine, lysophosphatidylglycerol, and lysophosphotidylserine had no significant effect on PLD activity whereas PLD was stimulated by lysophosphatidic acid and inhibited by lysophosphatidylinositol. Membrane-associated and soluble PLD, extracted from cabbage and castor bean leaf tissues, also was inhibited by LPE. Consistent with acyl-specific inhibition of PLD by LPE, senescence of cranberry fruits as measured by ethylene production was more effectively inhibited according to the increasing acyl chain length and unsaturation of LPE. There are no known specific inhibitors of PLD in plants and animals. We demonstrate specific inhibitory regulation of PLD by a lysophospholipid.
Resumo:
Phosphatidylcholine (PC) is a major source of lipid-derived second messenger molecules that function as both intracellular and extracellular signals. PC-specific phospholipase D (PLD) and phosphatidic acid phosphohydrolase (PAP) are two pivotal enzymes in this signaling system, and they act in series to generate the biologically active lipids phosphatidic acid (PA) and diglyceride. The identity of the PAP enzyme involved in PLD-mediated signal transduction is unclear. We provide the first evidence for a functional role of a type 2 PAP, PAP2b, in the metabolism of PLD-generated PA. Our data indicate that PAP2b localizes to regions of the cell in which PC hydrolysis by PLD is taking place. Using a newly developed PAP2b-specific antibody, we have characterized the expression, posttranslational modification, and localization of endogenous PAP2b. Glycosylation and localization of PAP2b appear to be cell type and tissue specific. Biochemical fractionation and immunoprecipitation analyses revealed that PAP2b and PLD2 activities are present in caveolin-1–enriched detergent-resistant membrane microdomains. We found that PLD2 and PAP2b act sequentially to generate diglyceride within this specialized membrane compartment. The unique lipid composition of these membranes may provide a selective environment for the regulation and actions of enzymes involved in signaling through PC hydrolysis.
Resumo:
Staphylococcus aureus produces a virulence factor, protein A (SpA), that contains five homologous Ig-binding domains. The interactions of SpA with the Fab region of membrane-anchored Igs can stimulate a large fraction of B cells, contributing to lymphocyte clonal selection. To understand the molecular basis for this activity, we have solved the crystal structure of the complex between domain D of SpA and the Fab fragment of a human IgM antibody to 2.7-Å resolution. In the complex, helices II and III of domain D interact with the variable region of the Fab heavy chain (VH) through framework residues, without the involvement of the hypervariable regions implicated in antigen recognition. The contact residues are highly conserved in human VH3 antibodies but not in other families. The contact residues from domain D also are conserved among all SpA Ig-binding domains, suggesting that each could bind in a similar manner. Features of this interaction parallel those reported for staphylococcal enterotoxins that are superantigens for many T cells. The structural homology between Ig VH regions and the T-cell receptor Vβ regions facilitates their comparison, and both types of interactions involve lymphocyte receptor surface remote from the antigen binding site. However, T-cell superantigens reportedly interact through hydrogen bonds with T-cell receptor Vβ backbone atoms in a primary sequence-independent manner, whereas SpA relies on a sequence-restricted conformational binding with residue side chains, suggesting that this common bacterial pathogen has adopted distinct molecular recognition strategies for affecting large sets of B and T lymphocytes.
Resumo:
T helper 1 cells play a major role in protective immunity against mycobacterial pathogens. Since the antigen (Ag) specificity of CD4+ human T cells is strongly controlled by HLA class II polymorphism, the immunogenic potential of candidate Ags needs to be defined in the context of HLA polymorphism. We have taken advantage of class II-deficient (Ab0) mice, transgenic for either HLA-DRA/B1*0301 (DR3) or HLA-DQB1*0302/DQA*0301 (DQ8) alleles. In these animals, all CD4+ T cells are restricted by the HLA molecule. We reported previously that human DR3-restricted T cells frequently recognize heat shock protein (hsp)65 of Mycobacterium tuberculosis, and only a single hsp65 epitope, p1–20. DR3.Ab0 mice, immunized with bacillus Calmette–Guérin or hsp65, developed T cell responses to M. tuberculosis, and recognized the same hsp65 epitope, p1–20. Hsp65-immunized DQ8.Ab0 mice mounted a strong response to bacillus Calmette–Guérin but not to p1–20. Instead, we identified three new DQ8-restricted T cell epitopes in the regions 171–200, 311–340, and 411–440. DR3.Ab0 mice immunized with a second major M. tuberculosis protein, Ag85 (composed of 85A, 85B, and 85C), also developed T cell responses against only one determinant, 85B p51–70, that was identified in this study. Importantly, subsequent analysis of human T cell responses revealed that HLA-DR3+, Ag85-reactive individuals recognize exactly the same peptide epitope as DR3.Ab0 mice. Strikingly, both DR3-restricted T cell epitopes represent the best DR3-binding sequences in hsp65 and 85B, revealing a strong association between peptide-immunodominance and HLA binding affinity. Immunization of DR3.Ab0 with the immunodominant peptides p1–20 and p51–70 induced T cell reactivity to M. tuberculosis. Thus, for two different Ags, T cells from DR3.Ab0 mice and HLA-DR3+ humans recognize the same immunodominant determinants. Our data support the use of HLA-transgenic mice in identifying human T cell determinants for the design of new vaccines.
Resumo:
Here we describe the cloning and initial characterization of a previously unidentified CRF-related neuropeptide, urocortin II (Ucn II). Searches of the public human genome database identified a region with significant sequence homology to the CRF neuropeptide family. By using homologous primers deduced from the human sequence, a mouse cDNA was isolated from whole brain poly(A)+ RNA that encodes a predicted 38-aa peptide, structurally related to the other known mammalian family members, CRF and Ucn. Ucn II binds selectively to the type 2 CRF receptor (CRF-R2), with no appreciable activity on CRF-R1. Transcripts encoding Ucn II are expressed in discrete regions of the rodent central nervous system, including stress-related cell groups in the hypothalamus (paraventricular and arcuate nuclei) and brainstem (locus coeruleus). Central administration of 1–10 μg of peptide elicits activational responses (Fos induction) preferentially within a core circuitry subserving autonomic and neuroendocrine regulation, but whose overall pattern does not broadly mimic the CRF-R2 distribution. Behaviorally, central Ucn II attenuates nighttime feeding, with a time course distinct from that seen in response to CRF. In contrast to CRF, however, central Ucn II failed to increase gross motor activity. These findings identify Ucn II as a new member of the CRF family of neuropeptides, which is expressed centrally and binds selectively to CRF-R2. Initial functional studies are consistent with Ucn II involvement in central autonomic and appetitive control, but not in generalized behavioral activation.
Resumo:
Chronic administration of the atypical antipsychotic drug, clozapine, to rodents has been shown to increase the concentration of apolipoprotein D (apoD) in several area of the brain, suggesting that apoD could be involved in the therapeutic effects of antipsychotic drugs and/or the pathology of psychotic illnesses. Here, we measured a significant decrease in the concentration of apoD in serum samples from schizophrenic patients. In contrast, apoD levels were significantly increased (92–287%) in dorsolateral prefrontal cortex (Brodmann's area 9) of schizophrenic and bipolar subjects. Elevated levels of apoD expression were also observed in the caudate of schizophrenic and bipolar subjects (68–89%). No differences in apoD immunoreactivity were detected in occipital cortex (Brodmann's area 18) in either group, or in the hippocampus, substantia nigra, or cerebellum of the schizophrenic group. The low serum concentrations of apoD observed in these patients supports recent hypotheses involving systemic insufficiencies in lipid metabolism/signaling in schizophrenia. Elevation of apoD expression selectively within central nervous system regions implicated in the pathology of these neuropsychiatric disorders suggests a focal compensatory response that neuroleptic drug regimens may augment.
Resumo:
The proline (Pro) concentration increases greatly in the growing region of maize (Zea mays L.) primary roots at low water potentials (ψw), largely as a result of an increased net rate of Pro deposition. Labeled glutamate (Glu), ornithine (Orn), or Pro was supplied specifically to the root tip of intact seedlings in solution culture at high and low ψw to assess the relative importance of Pro synthesis, catabolism, utilization, and transport in root-tip Pro deposition. Labeling with [3H]Glu indicated that Pro synthesis from Glu did not increase substantially at low ψw and accounted for only a small fraction of the Pro deposition. Labeling with [14C]Orn showed that Pro synthesis from Orn also could not be a substantial contributor to Pro deposition. Labeling with [3H]Pro indicated that neither Pro catabolism nor utilization in the root tip was decreased at low ψw. Pro catabolism occurred at least as rapidly as Pro synthesis from Glu. There was, however, an increase in Pro uptake at low ψw, which suggests increased Pro transport. Taken together, the data indicate that increased transport of Pro to the root tip serves as the source of low-ψw-induced Pro accumulation. The possible significance of Pro catabolism in sustaining root growth at low ψw is also discussed.
Resumo:
Three phospholipase Ds (PLDs; EC 3.1.4.4) have been cloned from Arabidopsis, and they exhibit two distinct types of activities: polyphosphoinositide-requiring PLD and PLD, and polyphosphoinositide-independent PLD. In subcellular fractions of Arabidopsis leaves, PLD and PLD were both present in the plasma membrane, intracellular membranes, mitochondria, and clathrin-coated vesicles, but their relative levels differed in these fractions. In addition, PLD was detected in the nuclear fraction. In contrast, PLD was not detectable in any of the subcellular fractions. PLD activity was higher in the metabolically more active organs such as flowers, siliques, and roots than in dry seeds and mature leaves, whereas the polyphosphoinositide-dependent PLD activity was greater in older, senescing leaves than in other organs. PLD mRNA accumulated at a lower level than the PLD and PLD transcripts in most organs, and the expression pattern of the PLD mRNA also differed from that of PLD and PLD in different organs. Collectively, these data demonstrated that PLD, PLD, and PLD have different patterns of subcellular distribution and tissue expression in Arabidopsis. The present study also provides evidence for the presence of an additional PLD that is structurally more closely related to PLD than to the other two PLDs.
Resumo:
The alloreactive human T cell clone MBM15 was found to exhibit dual specificity recognizing both an antigen in the context of the HLA class I A2 molecule and an antigen in the context of the HLA class II DR1. We demonstrated that the dual reactivity that was mediated via a single clonal T cell population depended on specific peptide binding. For complete recognition of the HLA-A2-restricted specificity the interaction of CD8 with HLA class I is essential. Interestingly, interaction of the CD8 molecule with HLA class I contributed to the HLA-DR1-restricted specificity. T cell clone MBM15 expressed two in-frame T cell receptor (TCR) Vα transcripts (Vα1 and Vα2) and one TCR Vβ transcript (Vβ13). To elucidate whether two TCR complexes were responsible for the dual recognition or one complex, cytotoxic T cells were transduced with retroviral vectors encoding the different TCR chains. Only T cells transduced with the TCR Vα1Vβ13 combination specifically recognized both the HLA-A2+ and HLA-DR1+ target cells, whereas the Vα2Vβ13 combination did not result in a TCR on the cell surface. Thus a single TCRαβ complex can have dual specificity, recognizing both a peptide in the context of HLA class I as well as a peptide in the context of HLA class II. Transactivation of T cells by an unrelated antigen in the context of HLA class II may evoke an HLA class I-specific T cell response. We propose that this finding may have major implications for immunotherapeutic interventions and insight into the development of autoimmune diseases.
Resumo:
The incorporation of potentially catalytic groups into DNA is of interest for the in vitro selection of novel deoxyribozymes. We have devised synthetic routes to a series of three C7 modified 7-deaza-dATP derivatives with pendant aminopropyl, Z-aminopropenyl and aminopropynyl side chains. These modified triphosphates have been tested as substrates for Taq polymerase during PCR. All the modifications are tolerated by this enzyme, with the aminopropynyl side chain giving the best result. Most protein enzymes have more than one type of catalytic group located in their active site. By using C5-imidazolyl-modified dUTPs together with 3-(aminopropynyl)-7-deaza-dATP in place of the natural nucleotides dTTP and dATP, we have demonstrated the simultaneous incorporation of both amino and imidazolyl moieties into a DNA molecule during PCR. The PCR product containing the four natural bases was fully digested by XbaI, while PCR products containing the modified 7-deaza-dATP analogues were not cleaved. Direct evidence for the simultaneous incorporation during PCR of an imidazole-modified dUTP and an amino-modified 7-deaza-dATP has been obtained using mass spectrometry.
Resumo:
Alterations of various components of the cell cycle regulatory machinery that controls the progression of cells from a quiescent to a growing state contribute to the development of many human cancers. Such alterations include the deregulated expression of G1 cyclins, the loss of function of activities such as those of protein p16INK4a that control G1 cyclin-dependent kinase activity, and the loss of function of the retinoblastoma protein (RB), which is normally regulated by the G1 cyclin-dependent kinases. Various studies have revealed an inverse relationship in the expression of p16INK4a protein and the presence of functional RB in many cell lines. In this study we show that p16INK4a is expressed in cervical cancer cell lines in which the RB gene, Rb, is not functional, either as a consequence of Rb mutation or expression of the human papillomavirus E7 protein. We also demonstrate that p16INK4a levels are increased in primary cells in which RB has been inactivated by DNA tumor virus proteins. Given the role of RB in controlling E2F transcription factor activity, we investigated the role of E2F in controlling p16INK4a expression. We found that E2F1 overexpression leads to an inhibition of cyclin D1-dependent kinase activity and induces the expression of a p16-related transcript. We conclude that the accumulation of G1 cyclin-dependent kinase activity during normal G1 progression leads to E2F accumulation through the inactivation of RB, and that this then leads to the induction of cyclin kinase inhibitor activity and a shutdown of G1 kinase activity.