39 resultados para MITOCHONDRIAL ELECTRON-TRANSPORT

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two factors that contribute to the progression of Parkinson disease are a brain defect in mitochondrial respiration and the generation of hydrogen peroxide (H2O2) by monoamine oxidase (MAO). Here we show that the two are linked. Metabolism of the neurotransmitter dopamine, or other monoamines (benzylamine, tyramine), by intact rat brain mitochondria suppresses pyruvate- and succinate-dependent electron transport. MAO inhibitors prevent this action. Mitochondrial damage is also reversed during electron flow. A probable explanation is that MAO-generated H2O2 oxidizes glutathione to glutathione disulfide (GSSG), which undergoes thiol-disulfide interchange to form protein mixed disulfides, thereby interfering reversibly with thiol-dependent enzymatic function. In agreement with this premise, direct addition of GSSG to mitochondria resulted in similar reversible inhibition of electron transport. In addition, the monoamines induced an elevation in protein mixed disulfides within mitochondria. These observations imply that (i) heightened activity and metabolism of neurotransmitter by monoamine neurons may affect neuronal function, and (ii) apparent defects in mitochondrial respiration associated with Parkinson disease may reflect, in part, an established increase in dopamine turnover. The experimental results also target mitochondrial repair mechanisms for further investigation and may, in time, lead to newer forms of therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proton-translocating NADH-quinone oxidoreductase (EC 1.6.99.3) is the largest and least understood enzyme complex of the respiratory chain. The mammalian mitochondrial enzyme (also called complex I) contains more than 40 subunits, whereas its structurally simpler bacterial counterpart (NDH-1) in Paracoccus denitrificans and Thermus thermophilus HB-8 consists of 14 subunits. A major unsolved question is the location and mechanism of the terminal electron transfer step from iron–sulfur cluster N2 to quinone. Potent inhibitors acting at this key region are candidate photoaffinity probes to dissect NADH-quinone oxidoreductases. Complex I and NDH-1 are very sensitive to inhibition by a variety of structurally diverse toxicants, including rotenone, piericidin A, bullatacin, and pyridaben. We designed (trifluoromethyl)diazirinyl[3H]pyridaben ([3H]TDP) as our photoaffinity ligand because it combines outstanding inhibitor potency, a suitable photoreactive group, and tritium at high specific activity. Photoaffinity labeling of mitochondrial electron transport particles was specific and saturable. Isolation, protein sequencing, and immunoprecipitation identified the high-affinity specifically labeled 23-kDa subunit as PSST of complex I. Immunoprecipitation of labeled membranes of P. denitrificans and T. thermophilus established photoaffinity labeling of the equivalent bacterial NQO6. Competitive binding and enzyme inhibition studies showed that photoaffinity labeling of the specific high-affinity binding site of PSST is exceptionally sensitive to each of the high-potency inhibitors mentioned above. These findings establish that the homologous PSST of mitochondria and NQO6 of bacteria have a conserved inhibitor-binding site and that this subunit plays a key role in electron transfer by functionally coupling iron–sulfur cluster N2 to quinone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synaptically released Zn2+ can enter and cause injury to postsynaptic neurons. Microfluorimetric studies using the Zn2+-sensitive probe, Newport green, examined levels of [Zn2+]i attained in cultured cortical neurons on exposure to N-methyl-d-asparte, kainate, or high K+ (to activate voltage-sensitive Ca2+ channels) in the presence of 300 μM Zn2+. Indicating particularly high permeability through Ca2+-permeable α-amino3-hydroxy-5-methyl-4-isoxazolepropionic-acid/kainate (Ca-A/K) channels, micromolar [Zn2+]i rises were observed only after kainate exposures and only in neurons expressing these channels [Ca-A/K(+) neurons]. Further studies using the oxidation-sensitive dye, hydroethidine, revealed Zn2+-dependent reactive oxygen species (ROS) generation that paralleled the [Zn2+]i rises, with rapid oxidation observed only in the case of Zn2+ entry through Ca-A/K channels. Indicating a mitochondrial source of this ROS generation, hydroethidine oxidation was inhibited by the mitochondrial electron transport blocker, rotenone. Additional evidence for a direct interaction between Zn2+ and mitochondria was provided by the observation that the Zn2+ entry through Ca-A/K channels triggered rapid mitochondrial depolarization, as assessed by using the potential-sensitive dye tetramethylrhodamine ethylester. Whereas Ca2+ influx through Ca-A/K channels also triggers ROS production, the [Zn2+]i rises and subsequent ROS production are of more prolonged duration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The light-saturated rate of photosynthetic O2 evolution in Chlamydomonas reinhardtii declined by approximately 75% on a per-cell basis after 4 d of P starvation or 1 d of S starvation. Quantitation of the partial reactions of photosynthetic electron transport demonstrated that the light-saturated rate of photosystem (PS) I activity was unaffected by P or S limitation, whereas light-saturated PSII activity was reduced by more than 50%. This decline in PSII activity correlated with a decline in both the maximal quantum efficiency of PSII and the accumulation of the secondary quinone electron acceptor of PSII nonreducing centers (PSII centers capable of performing a charge separation but unable to reduce the plastoquinone pool). In addition to a decline in the light-saturated rate of O2 evolution, there was reduced efficiency of excitation energy transfer to the reaction centers of PSII (because of dissipation of absorbed light energy as heat and because of a transition to state 2). These findings establish a common suite of alterations in photosynthetic electron transport that results in decreased linear electron flow when C. reinhardtii is limited for either P or S. It was interesting that the decline in the maximum quantum efficiency of PSII and the accumulation of the secondary quinone electron acceptor of PSII nonreducing centers were regulated specifically during S-limited growth by the SacI gene product, which was previously shown to be critical for the acclimation of C. reinhardtii to S limitation (J.P. Davies, F.H. Yildiz, and A.R. Grossman [1996] EMBO J 15: 2150–2159).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An NADPH-dependent NO2−-reducing system was reconstituted in vitro using ferredoxin (Fd) NADP+ oxidoreductase (FNR), Fd, and nitrite reductase (NiR) from the green alga Chlamydomonas reinhardtii. NO2− reduction was dependent on all protein components and was operated under either aerobic or anaerobic conditions. NO2− reduction by this in vitro pathway was inhibited up to 63% by 1 mm NADP+. NADP+ did not affect either methyl viologen-NiR or Fd-NiR activity, indicating that inhibition was mediated through FNR. When NADPH was replaced with a glucose-6-phosphate dehydrogenase (G6PDH)-dependent NADPH-generating system, rates of NO2− reduction reached approximately 10 times that of the NADPH-dependent system. G6PDH could be replaced by either 6-phosphogluconate dehydrogenase or isocitrate dehydrogenase, indicating that G6PDH functioned to: (a) regenerate NADPH to support NO2− reduction and (b) consume NADP+, releasing FNR from NADP+ inhibition. These results demonstrate the ability of FNR to facilitate the transfer of reducing power from NADPH to Fd in the direction opposite to that which occurs in photosynthesis. The rate of G6PDH-dependent NO2− reduction observed in vitro is capable of accounting for the observed rates of dark NO3− assimilation by C. reinhardtii.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of the quantum efficiencies of photosynthetic electron transport through photosystem II (φPSII) and CO2 assimilation (φCO2) were made simultaneously on leaves of maize (Zea mays) crops in the United Kingdom during the early growing season, when chilling conditions were experienced. The activities of a range of enzymes involved with scavenging active O2 species and the levels of key antioxidants were also measured. When leaves were exposed to low temperatures during development, the ratio of φPSII/φCO2 was elevated, indicating the operation of an alternative sink to CO2 for photosynthetic reducing equivalents. The activities of ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and superoxide dismutase and the levels of ascorbate and α-tocopherol were also elevated during chilling periods. This supports the hypothesis that the relative flux of photosynthetic reducing equivalents to O2 via the Mehler reaction is higher when leaves develop under chilling conditions. Lipoxygenase activity and lipid peroxidation were also increased during low temperatures, suggesting that lipoxygenase-mediated peroxidation of membrane lipids contributes to the oxidative damage occurring in chill-stressed leaves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence suggests that the small chloroplast heat-shock protein (Hsp) is involved in plant thermotolerance but its site of action is unknown. Functional disruption of this Hsp using anti-Hsp antibodies or addition of purified Hsp to chloroplasts indicated that (a) this Hsp protects thermolabile photosystem II and, consequently, whole-chain electron transport during heat stress; and (b) this Hsp completely accounted for heat acclimation of electron transport in pre-heat-stressed plants. Therefore, this Hsp is a major adaptation to acute heat stress in plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photosynthetic carbon metabolism is initiated by ribulose-bisphosphate carboxylase/oxygenase (Rubisco), which uses both CO2 and O2 as substrates. One 2-phosphoglycolate (P-glycolate) molecule is produced for each O2 molecule fixed. P-glycolate has been considered to be metabolized exclusively via the oxidative photosynthetic carbon cycle. This paper reports an additional pathway for P-glycolate and glycolate metabolism in the chloroplasts. Light-dependent glycolate or P-glycolate oxidation by osmotically shocked chloroplasts from the algae Dunaliella or spinach leaves was measured by three electron acceptors, methyl viologen (MV), potassium ferricyanide, or dichloroindophenol. Glycolate oxidation was assayed with 3-(3,4)-dichlorophenyl)-1,1-dimethylurea (DCMU) as oxygen uptake in the presence of MV at a rate of 9 mol per mg of chlorophyll per h. Washed thylakoids from spinach leaves oxidized glycolate at a rate of 22 mol per mg of chlorophyll per h. This light-dependent oxidation was inhibited completely by SHAM, an inhibitor of quinone oxidoreductase, and 75% by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which inhibits electron transfer from plastoquinone to the cytochrome b6f complex. SHAM stimulated severalfold glycolate excretion by algal cells, Dunaliella or Chlamydomonas, and by isolated Dunaliella chloroplasts. Glycolate and P-glycolate were oxidized about equally well to glyoxylate and phosphate. On the basis of results of inhibitor action, the possible site which accepts electrons from glycolate or P-glycolate is a quinone after the DCMU site but before the DBMIB site. This glycolate oxidation is a light-dependent, SHAM-sensitive, glycolate-quinone oxidoreductase system that is associated with photosynthetic electron transport in the chloroplasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under conditions (0.2% CO2; 1% O2) that allow high rates of photosynthesis, chlorophyll fluorescence was measured simultaneously with carbon assimilation at various light intensities in spinach (Spinacia oleracea) leaves. Using a stoichiometry of 3 ATP/CO2 and the known relationship between ATP synthesis rate and driving force (Delta pH), we calculated the light-dependent pH gradient (Delta pH) across the thylakoid membrane in intact leaves. These Delta pH values were correlated with the photochemical (qP) and nonphotochemical (qN) quenching of chlorophyll fluorescence and with the quantum yield of photosystem II (phiPSII). At Delta pH > 2.1 all three parameters (qP, qN, and phiPSII) changed very steeply with increasing DeltapH (decreasing pH in the thylakoid). The observed pH dependences followed hexacooperative titration curves with slightly different pKa values. The significance of the steep pH dependences with slightly different pKa values is discussed in relation to the regulation of photosynthetic electron transport in intact leaves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A specific requirement for coenzyme Q in the maintenance of trans-plasma-membrane redox activity is demonstrated. Extraction of coenzyme Q from membranes resulted in inhibition of NADH-ascorbate free radical reductase (trans electron transport), and addition of coenzyme Q10 restored the activity. NADH-cytochrome c oxidoreductase (cis electron transport) did not respond to the coenzyme Q status. Quinone analogs inhibited trans-plasma-membrane redox activity, and the inhibition was reversed by coenzyme Q. A 34-kDa coenzyme Q reductase (p34) has been purified from pig-liver plasma membranes. The isolated enzyme was sensitive to quinone-site inhibitors. p34 catalyzed the NADH-dependent reduction of coenzyme Q10 after reconstitution in phospholipid liposomes. When plasma membranes were supplemented with extra p34, NADH-ascorbate free radical reductase was activated but NADH-cytochrome c oxidoreductase was not. These results support the involvement of p34 as a source of electrons for the trans-plasma-membrane redox system oxidizing NADH and support coenzyme Q as an intermediate electron carrier between NADH and the external acceptor ascorbate free radical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In laboratory rodents, caloric restriction (CR) retards several age-dependent physiological and biochemical changes in skeletal muscle, including increased steady-state levels of oxidative damage to lipids, DNA, and proteins. We have previously used high-density oligonucleotide arrays to show that CR can prevent or delay most of the major age-related transcriptional alterations in the gastrocnemius muscle of C57BL/6 mice. Here we report the effects of aging and adult-onset CR on the gene expression profile of 7,070 genes in the vastus lateralis muscle from rhesus monkeys. Gene expression analysis of aged rhesus monkeys (mean age of 26 years) was compared with that of young animals (mean age of 8 years). Aging resulted in a selective up-regulation of transcripts involved in inflammation and oxidative stress, and a down-regulation of genes involved in mitochondrial electron transport and oxidative phosphorylation. Middle-aged monkeys (mean age of 20 years) subjected to CR since early adulthood (mean age of 11 years) were studied to determine the gene expression profile induced by CR. CR resulted in an up-regulation of cytoskeletal protein-encoding genes, and also a decrease in the expression of genes involved in mitochondrial bioenergetics. Surprisingly, we did not observe any evidence for an inhibitory effect of adult-onset CR on age-related changes in gene expression. These results indicate that the induction of an oxidative stress-induced transcriptional response may be a common feature of aging in skeletal muscle of rodents and primates, but the extent to which CR modifies these responses may be species-specific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytosolic phosphorylation ratio ([ATP]/[ADP][P(i)]) in the mammalian heart was found to be inversely related to body mass with an exponent of -0.30 (r = 0.999). This exponent is similar to -0.25 calculated for the mass-specific O2 consumption. The inverse of cytosolic free [ADP], the Gibbs energy of ATP hydrolysis (delta G'ATP), and the efficiency of ATP production (energy captured in forming 3 mol of ATP per cycle along the mitochondrial respiratory chain from NADH to 1/2 O2) were all found to scale with body mass with a negative exponent. On the basis of scaling of the phosphorylation ratio and free cytosolic [ADP], we propose that the myocardium and other tissues of small mammals represent a metabolic system with a higher driving potential (a higher delta G'ATP from the higher [ATP]/[ADP][P(i)]) and a higher kinetic gain [(delta V/Vmax)/delta [ADP]] where small changes in free [ADP] produce large changes in steady-state rates of O2 consumption. From the inverse relationship between mitochondrial efficiency and body size we calculate that tissues of small mammals are more efficient than those of large mammals in converting energy from the oxidation of foodstuffs to the bond energy of ATP. A higher efficiency also indicates that mitochondrial electron transport is not the major site for higher heat production in small mammals. We further propose that the lower limit of about 2 g for adult endotherm body size (bumblebee-bat, Estrucan shrew, and hummingbird) may be set by the thermodynamics of the electron transport chain. The upper limit for body size (100,000-kg adult blue whale) may relate to a minimum delta G'ATP of approximately 55 kJ/mol for a cytoplasmic phosphorylation ratio of 12,000 M-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An emerging and important site of action for nitric oxide (NO) within cells is the mitochondrial inner membrane, where NO binds to and inhibits members of the electron transport chain, complex III and cytochrome c oxidase. Although it is known that inhibition of cytochrome c oxidase by NO is competitive with O2, the mechanisms that underlie this phenomenon remain unclear, and the impact of both NO and O2 partitioning into biological membranes has not been considered. These properties are particularly interesting because physiological O2 tensions can vary widely, with NO having a greater inhibitory effect at low O2 tensions (<20 μM). In this study, we present evidence for a consumption of NO in mitochondrial membranes in the absence of substrate, in a nonsaturable process that is O2 dependent. This consumption modulates inhibition of cytochrome c oxidase by NO and is enhanced by the addition of exogenous membranes. From these data, it is evident that the partition of NO into mitochondrial membranes has a major impact on the ability of NO to control mitochondrial respiration. The implications of this conclusion are discussed in the context of mitochondrial lipid:protein ratios and the importance of NO as a regulator of respiration in pathophysiology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

All photosynthetic reaction centers share a common structural theme. Two related, integral membrane polypeptides sequester electron transfer cofactors into two quasi-symmetrical branches, each of which incorporates a quinone. In type II reaction centers [photosystem (PS) II and proteobacterial reaction centers], electron transfer proceeds down only one of the branches, and the mobile quinone on the other branch is used as a terminal acceptor. PS I uses iron-sulfur clusters as terminal acceptors, and the quinone serves only as an intermediary in electron transfer. Much effort has been devoted to understanding the unidirectionality of electron transport in type II reaction centers, and it was widely thought that PS I would share this feature. We have tested this idea by examining in vivo kinetics of electron transfer from the quinone in mutant PS I reaction centers. This transfer is associated with two kinetic components, and we show that mutation of a residue near the quinone in one branch specifically affects the faster component, while the corresponding mutation in the other branch specifically affects the slower component. We conclude that both electron transfer branches in PS I are active.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of low temperature on cell growth, photosynthesis, photoinhibition, and nitrate assimilation was examined in the cyanobacterium Synechococcus sp. PCC 6301 to determine the factor that limits growth. Synechococcus sp. PCC 6301 grew exponentially between 20°C and 38°C, the growth rate decreased with decreasing temperature, and growth ceased at 15°C. The rate of photosynthetic oxygen evolution decreased more slowly with temperature than the growth rate, and more than 20% of the activity at 38°C remained at 15°C. Oxygen evolution was rapidly inactivated at high light intensity (3 mE m−2 s−1) at 15°C. Little or no loss of oxygen evolution was observed under the normal light intensity (250 μE m−2 s−1) for growth at 15°C. The decrease in the rate of nitrate consumption by cells as a function of temperature was similar to the decrease in the growth rate. Cells could not actively take up nitrate or nitrite at 15°C, although nitrate reductase and nitrite reductase were still active. These data demonstrate that growth at low temperature is not limited by a decrease in the rate of photosynthetic electron transport or by photoinhibition, but that inactivation of the nitrate/nitrite transporter limits growth at low temperature.