3 resultados para MIGRATION INHIBITORS

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased expression of the serine protease urokinase-type plasminogen activator (uPA) in tumor tissues is highly correlated with tumor cell migration, invasion, proliferation, progression, and metastasis. Thus inhibition of uPA activity represents a promising target for antimetastatic therapy. So far, only the x-ray crystal structure of uPA inactivated by H-Glu-Gly-Arg-chloromethylketone has been reported, thus limited data are available for a rational structure-based design of uPA inhibitors. Taking into account the trypsin-like arginine specificity of uPA, (4-aminomethyl)phenylguanidine was selected as a potential P1 residue and iterative derivatization of its amino group with various hydrophobic residues, and structure–activity relationship-based optimization of the spacer in terms of hydrogen bond acceptor/donor properties led to N-(1-adamantyl)-N′-(4-guanidinobenzyl)urea as a highly selective nonpeptidic uPA inhibitor. The x-ray crystal structure of the uPA B-chain complexed with this inhibitor revealed a surprising binding mode consisting of the expected insertion of the phenylguanidine moiety into the S1 pocket, but with the adamantyl residue protruding toward the hydrophobic S1′ enzyme subsite, thus exposing the ureido group to hydrogen-bonding interactions. Although in this enzyme-bound state the inhibitor is crossing the active site, interactions with the catalytic residues Ser-195 and His-57 are not observed, but their side chains are spatially displaced for steric reasons. Compared with other trypsin-like serine proteases, the S2 and S3/S4 pockets of uPA are reduced in size because of the 99-insertion loop. Therefore, the peculiar binding mode of the new type of uPA inhibitors offers the possibility of exploiting optimized interactions at the S1′/S2′ subsites to further enhance selectivity and potency. Because crystals of the uPA/benzamidine complex allow inhibitor exchange by soaking procedures, the structure-based design of new generations of uPA inhibitors can rely on the assistance of x-ray analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wounding of endothelial cells is associated with altered direct intercellular communication. To determine whether gap junctional communication participates to the wound repair process, we have compared connexin (Cx) expression, cell-to-cell coupling and kinetics of wound repair in monolayer cultures of PymT-transformed mouse endothelial cells (clone bEnd.3) and in bEnd.3 cells expressing different dominant negative Cx inhibitors. In parental bEnd.3 cells, mechanical wounding increased expression of Cx43 and decreased expression of Cx37 at the site of injury, whereas Cx40 expression was unaffected. These wound-induced changes in Cx expression were associated with functional changes in cell-to-cell coupling, as assessed with different fluorescent tracers. Stable transfection with cDNAs encoding for the chimeric connexin 3243H7 or the fusion protein Cx43-βGal resulted in perturbed gap junctional communication between bEnd.3 cells under both basal and wounded conditions. The time required for complete repair of a defined wound within a confluent monolayer was increased by ∼50% in cells expressing the dominant negative Cx inhibitors, whereas other cell properties, such as proliferation rate, migration of single cells, cyst formation and extracellular proteolytic activity, were unaltered. These findings demonstrate that proper Cx expression is required for coordinated migration during repair of an endothelial wound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serotonergic agents (uptake inhibitors, receptor ligands) cause significant craniofacial malformations in cultured mouse embryos suggesting that 5-hydroxytryptamine (serotonin) (5-HT) may be an important regulator of craniofacial development. To determine whether serotonergic regulation of cell migration might underly some of these effects, cranial neural crest (NC) explants from embryonic day 9 (E9) (plug day = E1) mouse embryos or dissociated mandibular mesenchyme cells (derived from NC) from E12 embryos were placed in a modified Boyden chamber to measure effects of serotonergic agents on cell migration. A dose-dependent effect of 5-HT on the migration of highly motile cranial NC cells was demonstrated, such that low concentrations of 5-HT stimulated migration, whereas this effect was progressively lost as the dose of 5-HT was increased. In contrast, most concentrations of 5-HT inhibited migration of less motile, mandibular mesenchyme cells. To investigate the possible involvement of specific 5-HT receptors in the stimulation of NC migration, several 5-HT subtype-selective antagonists were used to block the effects of the most stimulatory dose of 5-HT (0.01 microM). Only NAN-190 (a 5-HT1A antagonist) inhibited the effect of 5-HT, suggesting involvement of this receptor. Further evidence was obtained by using immunohistochemistry with 5-HT receptor antibodies, which revealed expression of the 5-HT1A receptor but not other subtypes by migrating NC cells in both embryos and cranial NC explants. These results suggest that by activating appropriate receptors 5-HT may regulate migration of cranial NC cells and their mesenchymal derivatives in the mouse embryo.