3 resultados para MICROTUS-OCHROGASTER
em National Center for Biotechnology Information - NCBI
Resumo:
Glucocorticoid levels in animals may respond to and influence the development of social attachments. This hypothesis was tested in prairie voles (Microtus ochrogaster), monogamous rodents that form long-term heterosexual pair bonds. In socially naive female prairie voles, cohabitation with an unfamiliar male resulted in a dramatic decline in serum corticosterone levels. When corticosterone levels were reduced via adrenalectomy, females developed partner preferences after 1 h of cohabitation, while sham-operated and untreated females required 3 h or more of nonsexual cohabitation to establish a partner preference. In adrenalectomized and intact females, exogenous injections of corticosterone, given prior to social exposure, prevented the development of preferences for the cohabitating male. Although corticosterone inhibited the development of partner preferences, it did not interfere with the expression of previously established social preferences. These results suggest that social stimuli can modulate adrenal activity and that adrenal activity, in turn, is capable of influencing the formation of adult social preferences in female prairie voles. The involvement of the adrenal axis in the formation of partner preferences and the subsequent development of pair bonds provides a mechanism through which environmental and social factors may influence social organization in this species.
Resumo:
Although the biological roots of aggression have been the source of intense debate, the precise physiological mechanisms responsible for aggression remain poorly understood. In most species, aggression is more common in males than females; thus, gonadal hormones have been a focal point for research in this field. Although gonadal hormones have been shown to influence the expression of aggression, in many cases aggression can continue after castration, indicating that testicular steroids are not completely essential for the expression of aggression. Recently, the mammalian neuropeptide arginine vasopressin (AVP) has been implicated in aggression. AVP plays a particularly important role in social behavior in monogamous mammals, such as prairie voles (Microtus ochrogaster). In turn, the effects of social experiences may be mediated by neuropeptides, including AVP. For example, sexually naïve prairie voles are rarely aggressive. However, 24 h after the onset of mating, males of this species become significantly aggressive toward strangers. Likewise, in adult male prairie voles, central (intracerebroventricular) injections of AVP can significantly increase intermale aggression, suggesting a role for AVP in the expression of postcopulatory aggression in adult male prairie voles. In this paper, we demonstrate that early postnatal exposure to AVP can have long-lasting effects on the tendency to show aggression, producing levels of aggression in sexually naïve, adult male prairie voles that are comparable to those levels observed after mating. Females showed less aggression and were less responsive to exogenous AVP, but the capacity of an AVP V1a receptor antagonist to block female aggression also implicates AVP in the development of female aggression.
Resumo:
Prairie voles (Microtus ochrogaster) are monogamous rodents that form pair bonds characterized by a preference for a familiar social partner. In male prairie voles, exposure to either the stress of swimming or exogenous injections of corticosterone facilitate the development of a social preference for a female with which the male was paired after injection or swimming. Conversely, adrenalectomy inhibits partner preference formation in males and the behavioral effects of adrenalectomy are reversed by corticosterone replacement. In female prairie voles, swim stress interferes with the development of social preferences and corticosterone treatments inhibit the formation of partner preferences, while adrenalectomized females form preferences more quickly than adrenally intact controls. Because sex differences in both behavior and physiology are typically reduced in monogamous species, we initially predicted that male and female prairie voles would exhibit similar behavioral responses to corticosterone. However, our findings suggest an unanticipated sexual dimorphism in the physiological processes modulating social preferences. This dimorphic involvement of stress hormones in pair bonding provides a proximate mechanism for regulating social organization, while permitting males and females to adapt their reproductive strategies in response to environmental challenges.