69 resultados para MEIOTIC CHROMOSOMES
em National Center for Biotechnology Information - NCBI
Resumo:
Polymers tied together by constraints exhibit an internal pressure; this idea is used to analyze physical properties of the bottle-brush–like chromosomes of meiotic prophase that consist of polymer-like flexible chromatin loops, attached to a central axis. Using a minimal number of experimental parameters, semiquantitative predictions are made for the bending rigidity, radius, and axial tension of such brushes, and the repulsion acting between brushes whose bristles are forced to overlap. The retraction of lampbrush loops when the nascent transcripts are stripped away, the oval shape of diplotene bivalents between chiasmata, and the rigidity of pachytene chromosomes are all manifestations of chromatin pressure. This two-phase (chromatin plus buffer) picture that suffices for meiotic chromosomes has to be supplemented by a third constituent, a chromatin glue to understand mitotic chromosomes, and explain how condensation can drive the resolution of entanglements. This process resembles a thermal annealing in that a parameter (the affinity of the glue for chromatin and/or the affinity of the chromatin for buffer) has to be tuned to achieve optimal results. Mechanical measurements to characterize this protein–chromatin matrix are proposed. Finally, the propensity for even slightly chemically dissimilar polymers to phase separate (cluster like with like) can explain the apparent segregation of the chromatin into A+T- and G+C-rich regions revealed by chromosome banding.
Resumo:
To explore the role of nonmuscle myosin II isoforms during mouse gametogenesis, fertilization, and early development, localization and microinjection studies were performed using monospecific antibodies to myosin IIA and IIB isotypes. Each myosin II antibody recognizes a 205-kDa protein in oocytes, but not mature sperm. Myosin IIA and IIB demonstrate differential expression during meiotic maturation and following fertilization: only the IIA isoform detects metaphase spindles or accumulates in the mitotic cleavage furrow. In the unfertilized oocyte, both myosin isoforms are polarized in the cortex directly overlying the metaphase-arrested second meiotic spindle. Cortical polarization is altered after spindle disassembly with Colcemid: the scattered meiotic chromosomes initiate myosin IIA and microfilament assemble in the vicinity of each chromosome mass. During sperm incorporation, both myosin II isotypes concentrate in the second polar body cleavage furrow and the sperm incorporation cone. In functional experiments, the microinjection of myosin IIA antibody disrupts meiotic maturation to metaphase II arrest, probably through depletion of spindle-associated myosin IIA protein and antibody binding to chromosome surfaces. Conversely, the microinjection of myosin IIB antibody blocks microfilament-directed chromosome scattering in Colcemid-treated mature oocytes, suggesting a role in mediating chromosome–cortical actomyosin interactions. Neither myosin II antibody, alone or coinjected, blocks second polar body formation, in vitro fertilization, or cytokinesis. Finally, microinjection of a nonphosphorylatable 20-kDa regulatory myosin light chain specifically blocks sperm incorporation cone disassembly and impedes cell cycle progression, suggesting that interference with myosin II phosphorylation influences fertilization. Thus, conventional myosins break cortical symmetry in oocytes by participating in eccentric meiotic spindle positioning, sperm incorporation cone dynamics, and cytokinesis. Although murine sperm do not express myosin II, different myosin II isotypes may have distinct roles during early embryonic development.
Resumo:
Two RecA homologs, Rad51 and Dmc1, assemble as cytologically visible complexes (foci) at the same sites on meiotic chromosomes. Time course analysis confirms that co-foci appear and disappear as the single predominant form. A large fraction of co-foci are eliminated in a red1 mutant, which is expected as a characteristic of the interhomolog-specific recombination pathway. Previous studies suggested that normal Dmc1 loading depends on Rad51. We show here that a mutation in TID1/RDH54, encoding a RAD54 homolog, reduces Rad51-Dmc1 colocalization relative to WT. A rad54 mutation, in contrast, has relatively little effect on RecA homolog foci except when strains also contain a tid1/rdh54 mutation. The role of Tid1/Rdh54 in coordinating RecA homolog assembly may be very direct, because Tid1/Rdh54 is known to physically bind both Dmc1 and Rad51. Also, Dmc1 foci appear early in a tid1/rdh54 mutant. Thus, Tid1 may normally act with Rad51 to promote ordered RecA homolog assembly by blocking Dmc1 until Rad51 is present. Finally, whereas double-staining foci predominate in WT nuclei, a subset of nuclei with expanded chromatin exhibit individual Rad51 and Dmc1 foci side-by-side, suggesting that a Rad51 homo-oligomer and a Dmc1 homo-oligomer assemble next to one another at the site of a single double-strand break (DSB) recombination intermediate.
Resumo:
The nucleus of spermatocytes provides during the first meiotic prophase an interesting model for investigating relationships of the nuclear envelope (NE) with components of the nuclear interior. During the pachytene stage, meiotic chromosomes are synapsed via synaptonemal complexes (SCs) and attached through both ends to the nuclear periphery. This association is dynamic because chromosomes move during the process of synapsis and desynapsis that takes place during meiotic prophase. The NE of spermatocytes possesses some peculiarities (e.g., lower stability than in somatic cells, expression of short meiosis-specific lamin isoforms called C2 and B3) that could be critically involved in this process. For better understanding of the association of chromosomes with the nuclear periphery, in the present study we have investigated the distribution of NE proteins in relation to SC attachment sites. A major outcome was the finding that lamin C2 is distributed in the form of discontinuous domains at the NE of spermatocytes and that SC attachment sites are embedded in these domains. Lamin C2 appears to form part of larger structures as suggested by cell fractionation experiments. According to these results, we propose that the C2-containing domains represent local reinforcements of the NE that are involved in the proper attachment of SCs.
Resumo:
Zip1 is a yeast synaptonemal complex (SC) central region component and is required for normal meiotic recombination and crossover interference. Physical analysis of meiotic recombination in a zip1 mutant reveals the following: Crossovers appear later than normal and at a reduced level. Noncrossover recombinants, in contrast, seem to appear in two phases: (i) a normal number appear with normal timing and (ii) then additional products appear late, at the same time as crossovers. Also, Holliday junctions are present at unusually late times, presumably as precursors to late-appearing products. Red1 is an axial structure component required for formation of cytologically discernible axial elements and SC and maximal levels of recombination. In a red1 mutant, crossovers and noncrossovers occur at coordinately reduced levels but with normal timing. If Zip1 affected recombination exclusively via SC polymerization, a zip1 mutation should confer no recombination defect in a red1 strain background. But a red1 zip1 double mutant exhibits the sum of the two single mutant phenotypes, including the specific deficit of crossovers seen in a zip1 strain. We infer that Zip1 plays at least one role in recombination that does not involve SC polymerization along the chromosomes. Perhaps some Zip1 molecules act first in or around the sites of recombinational interactions to influence the recombination process and thence nucleate SC formation. We propose that a Zip1-dependent, pre-SC transition early in the recombination reaction is an essential component of meiotic crossover control. A molecular basis for crossover/noncrossover differentiation is also suggested.
Resumo:
Genetic mapping of traits and mutations in mammals is dependent upon linkage analysis. The resolution achieved by this method is related to the number of offspring that can be scored and position of crossovers near a gene. Higher precision mapping is obtained by expanding the collection of progeny from an appropriate cross, which in turn increases the number of potentially informative recombinants. A more efficient approach would be to increase the frequency of recombination, rather than the number of progeny. The anticancer drug cisplatin, which causes DNA strand breakage and is highly recombinogenic in some model organisms, was tested for its ability to induce germ-line recombination in mice. Males were exposed to cisplatin and mated at various times thereafter to monitor the number of crossovers inherited by offspring. We observed a striking increase on all three chromosomes examined and established a regimen that nearly doubled crossover frequency. The timing of the response indicated that the crossovers were induced at the early pachytene stage of meiosis I. The ability to increase recombination should facilitate genetic mapping and positional cloning in mice.
Resumo:
Topoisomerase II is able to break and rejoin double-strand DNA. It controls the topological state and forms and resolves knots and catenanes. Not much is known about the relation between the chromosome segregation and condensation defects as found in yeast top2 mutants and the role of topoisomerase II in meiosis. We studied meiosis in a heat-sensitive top2 mutant of Schizosaccharomyces pombe. Topoisomerase II is not required until shortly before meiosis I. The enzyme is necessary for condensation shortly before the first meiotic division but not for early meiotic prophase condensation. DNA replication, prophase morphology, and dynamics of the linear elements are normal in the top2 mutant. The top2 cells are not able to perform meiosis I. Arrested cells have four spindle pole bodies and two spindles but only one nucleus, suggesting that the arrest is nonregulatory. Finally, we show that the arrest is partly solved in a top2 rec7 double mutant, indicating that topoisomerase II functions in the segregation of recombined chromosomes. We suggest that the inability to decatenate the replicated DNA is the primary defect in top2. This leads to a loss of chromatin condensation shortly before meiosis I, failure of sister chromatid separation, and a nonregulatory arrest.
Resumo:
In most organisms homologous recombination is vital for the proper segregation of chromosomes during meiosis, the formation of haploid sex cells from diploid precursors. This review compares meiotic recombination and chromosome segregation in the fission yeast Schizosaccharomyces pombe and the distantly related budding yeast Saccharomyces cerevisiae, two especially tractable microorganisms. Certain features, such as the occurrence of DNA breaks associated with recombination, appear similar, suggesting that these features may be common in eukaryotes. Other features, such as the role of these breaks and the ability of chromosomes to segregate faithfully in the absence of recombination, appear different, suggesting multiple solutions to the problems faced in meiosis.
Resumo:
Eukaryotic homologs of Escherichia coli Rec-A protein have been shown to form nucleoprotein filaments with single-stranded DNA that recognize homologous sequences in duplex DNA. Several recent reports in four widely diverse species have demonstrated the association of RecA homologs with meiotic prophase chromatin. The current immunocytological study on mouse spermatocytes and oocytes shows that a eukaryotic homolog, Rad5l, associates with a subset of chromatin sites as early as premeiotic S phase, hours before either the appearance of precursors of synaptonemal complexes or the initiation of synapsis. When homologous chromosomes do begin to pair, the Rad5l-associated sequences are sites of initial contact between homologues and of localized DNA synthesis. Distribution of Rad5l foci on the chromatin of fully synapsed bivalents at early pachynema corresponds to an R-band pattern of mitotic chromosomes. R-bands are known to be preferred sites of both synaptic initiation and recombination. The time course of appearance of Rad51 association with chromatin, its distribution, and its interaction with other Rad5l-associated sequences suggests that it plays an important role preselection of sequences and synaptic initiation.
Resumo:
Homologous chromosomes pair, and then migrate to opposite poles of the spindle at meiosis I. In most eukaryotic organisms, reciprocal recombinations (crossovers) between the homologs are critical to the success of this process. Individuals with defects in meiotic recombination typically produce high levels of aneuploid gametes and exhibit low fertility or are sterile. The experiments described here were designed to test whether different crossovers are equally able to contribute to the fidelity of meiotic chromosome segregation in yeast. These experiments were performed with model chromosomes with which it was possible to control and measure the distributions of meiotic crossovers in wild-type cells. Physical and genetic approaches were used to map crossover positions on model chromosomes and to correlate crossover position with meiotic segregation behavior. The results show that crossovers at different chromosomal positions have different abilities to enhance the fidelity of meiotic segregation.
Resumo:
Frequencies of meiotic configurations in cytogenetic stocks are dependent on chiasma frequencies in segments defined by centromeres, breakpoints, and telomeres. The expectation maximization algorithm is proposed as a general method to perform maximum likelihood estimations of the chiasma frequencies in the intervals between such locations. The estimates can be translated via mapping functions into genetic maps of cytogenetic landmarks. One set of observational data was analyzed to exemplify application of these methods, results of which were largely concordant with other comparable data. The method was also tested by Monte Carlo simulation of frequencies of meiotic configurations from a monotelodisomic translocation heterozygote, assuming six different sample sizes. The estimate averages were always close to the values given initially to the parameters. The maximum likelihood estimation procedures can be extended readily to other kinds of cytogenetic stocks and allow the pooling of diverse cytogenetic data to collectively estimate lengths of segments, arms, and chromosomes.
Resumo:
In most allopolyploid plants, only homogenetic chromosome pairing occurs in meiosis, as a result of the recognition of genome differentiation by the genetic system regulating meiotic chromosome pairing. The nature of differentiation between chromosomes of closely related genomes is examined here by investigating recombination between wheat chromosome 1A and the closely related homoeologous chromosome 1Am of Triticum monococcum. The recognition of the differentiation between these chromosomes by the Ph1 locus, which prevents heterogenetic chromosome pairing in wheat, is also investigated. Chromosomes 1A and 1Am are shown to be colinear, and it is concluded that they are differentiated "substructurally." This substructural differentiation is argued to be recognized by the Ph1 locus. In the absence of Ph1, the distribution and frequencies of crossing over between the 1A and 1Am homoeologues were similar to the distribution and frequencies of crossing over between 1A homologues. The cytogenetic and evolutionary significance of these findings is discussed.
Resumo:
Eukaryotic viruses can maintain latency in dividing cells as extrachromosomal nuclear plasmids. Segregation and nuclear retention of DNA is, therefore, a key issue in retaining copy number. The E2 enhancer protein of the papillomaviruses is required for viral DNA replication and transcription. Viral mutants that prevent phosphorylation of the bovine papillomavirus type 1 (BPV) E2 protein are transformation-defective, despite normal viral gene expression and replication function. Cell colonies harboring such mutants show sectoring of viral DNA and are unable to maintain the episome. We find that transforming viral DNA attaches to mitotic chromosomes, in contrast to the mutant genome encoding the E2 phosphorylation mutant. Second-site suppressor mutations were uncovered in both E1 and E2 genes that allow for transformation, maintenance, and chromosomal attachment. E2 protein was also found to colocalize to mitotic chromosomes, whereas the mutant did not, suggesting a direct role for E2 in viral attachment to chromosomes. Such viral hitch-hiking onto cellular chromosomes is likely to provide a general mechanism for maintaining nuclear plasmids.
Resumo:
In almost all animal species, immature oocytes are arrested naturally in the first meiotic prophase, with a large nucleus called the germinal vesicle. A number of previous studies showed that both activation of maturation/M phase-promoting factor (MPF) (assayed by semiquantitative cytological methods) and some other maturational events occur essentially normally in enucleated oocytes from many amphibian species and mice. Hence, for nearly three decades, it has generally been believed that nuclear material is dispensable for MPF activation and the meiotic cell cycle in vertebrate oocytes. Here, we have challenged this view by examining the histone H1 kinase activities and the molecular forms of MPF in experimentally manipulated Xenopus oocytes. We show that oocytes injected with nuclear material undergo much more rapid MPF activation and maturation than uninjected control oocytes. Conversely, enucleated oocytes, unlike nucleated counterparts, undergo only weak MPF activation in meiosis I and no detectable MPF reactivation in meiosis II, the latter accompanying inhibitory tyrosine phosphorylation of cdc2 kinase, the catalytic subunit of MPF. These results argue strongly that nuclear material is indispensable for the meiotic cell cycle, particularly MPF reactivation (or cdc2 tyrosine dephosphorylation) on entry into meiosis II, in Xenopus oocytes. The classical and general view may thus need reconsideration.
Resumo:
Perhaps the most striking fact about early Cenozoic avian history some 70 million years ago was the rapid radiation of large, flightless, ground-living birds. It has been suggested that, for a time, there was active competition between these large terrestrial birds and the early mammals. Probably reflecting the above noted early start of Ratitae of the infraclass Eoaves, the presumptive sex chromosomes of their present day survivors, such as the emu and the ostrich, largely remained homomorphic. The signs of genetic differentiation between their still-homomorphic Z and W chromosomes were tested by using two marker genes (Z-linked ZOV3 and the gene for the iron-responsive element-binding protein) and one marker sequence of a part of a presumptive pseudogene (W-linked EE0.6 of the chicken). Their homologues, maintaining 71–92% identities to the chicken counterparts, were found in both the emu (Dromaius novaehollandiae) and the ostrich (Struthio camelus). Their locations were visualized on chromosome preparations by fluorescence in situ hybridization. In the case of the emu, these three marker sequences were localized on both members of the fifth pair of a female, thus revealing no sign yet of genetic differentiation between the Z and the W. The finding was the same with regard to both members of the fourth pair of male ostriches. In the female ostrich, however, the sequence of the gene for the iron-responsive element-binding protein was missing from one of the pairs, thus revealing the differentiation by a small deletion of the W from the Z.