10 resultados para MATCHING-TO-SAMPLE

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual long-term memory in primates has been assessed by using the pair-association (PA) task, in which a subject retrieves and chooses the paired associate of a cue picture. Our previous studies on single neurons in the anterior inferotemporal (AIT) cortex suggested their roles in representing paired associates in the mind. To test the possibility that the delay activity of AIT neurons is related to a particular picture as a sought target, we devised the PA with color switch (PACS) task. In the PACS task, the necessity for memory retrieval and its initiation time were controlled by a color switch in the middle of the delay period. A control task, in which there is no color switch, corresponds to the conventional delayed matching-to-sample (DMS) task where the monkey chooses the same picture as a cue. We found that AIT neurons started to respond just after the color switch in the PACS task, when the cue-optimal picture's associate was presented as a cue. In contrast, they showed no response change in the DMS task. We confirmed that this effect is not due to the visual response to colors. Furthermore, when the cue-optimal picture was presented as a cue, these neurons showed suppression after the color switch in the PACS task. These results suggest that the activity of AIT neurons mediates gating mechanisms that preferentially pass information about a sought target, even when the sought target is retrieved from long-term memory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is considerable evidence from animal studies that gonadal steroid hormones modulate neuronal activity and affect behavior. To study this in humans directly, we used H215O positron-emission tomography to measure regional cerebral blood flow (rCBF) in young women during three pharmacologically controlled hormonal conditions spanning 4–5 months: ovarian suppression induced by the gonadotropin-releasing hormone agonist leuprolide acetate (Lupron), Lupron plus estradiol replacement, and Lupron plus progesterone replacement. Estradiol and progesterone were administered in a double-blind cross-over design. On each occasion positron-emission tomography scans were performed during (i) the Wisconsin Card Sorting Test, a neuropsychological test that physiologically activates prefrontal cortex (PFC) and an associated cortical network including inferior parietal lobule and posterior inferolateral temporal gyrus, and (ii) a no-delay matching-to-sample sensorimotor control task. During treatment with Lupron alone (i.e., with virtual absence of gonadal steroid hormones), there was marked attenuation of the typical Wisconsin Card Sorting Test activation pattern even though task performance did not change. Most strikingly, there was no rCBF increase in PFC. When either progesterone or estrogen was added to the Lupron regimen, there was normalization of the rCBF activation pattern with augmentation of the parietal and temporal foci and return of the dorsolateral PFC activation. These data directly demonstrate that the hormonal milieu modulates cognition-related neural activity in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-unit activity was recorded from the hand areas of the somatosensory cortex of monkeys trained to perform a haptic delayed matching to sample task with objects of identical dimensions but different surface features. During the memory retention period of the task (delay), many units showed sustained firing frequency change, either excitation or inhibition. In some cases, firing during that period was significantly higher after one sample object than after another. These observations indicate the participation of somatosensory neurons not only in the perception but in the short-term memory of tactile stimuli. Neurons most directly implicated in tactile memory are (i) those with object-selective delay activity, (ii) those with nondifferential delay activity but without activity related to preparation for movement, and (iii) those with delay activity in the haptic-haptic delayed matching task but no such activity in a control visuo-haptic delayed matching task. The results indicate that cells in early stages of cortical somatosensory processing participate in haptic short-term memory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe a method that can be used to produce equimolar amounts of two or more specific proteins in a cell. In this approach, termed the ubiquitin/protein/reference (UPR) technique, a reference protein and a protein of interest are synthesized as a polyprotein separated by a ubiquitin moiety. This tripartite fusion is cleaved, cotranslationally or nearly so, by ubiquitin-specific processing proteases after the last residue of ubiquitin, producing equimolar amounts of the protein of interest and the reference protein bearing a C-terminal ubiquitin moiety. In applications such as pulse-chase analysis, the UPR technique can compensate for the scatter of immunoprecipitation yields, sample volumes, and other sources of sample-to-sample variation. In particular, this method allows a direct comparison of proteins' metabolic stabilities from the pulse data alone. We used UPR to examine the N-end rule (a relation between the in vivo half-life of a protein and the identity of its N-terminal residue) in L cells, a mouse cell line. The increased accuracy afforded by the UPR technique underscores insufficiency of the current "half-life" terminology, because in vivo degradation of many proteins deviates from first-order kinetics. We consider this problem and discuss other applications of UPR.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A Monte Carlo simulation method for globular proteins, called extended-scaled-collective-variable (ESCV) Monte Carlo, is proposed. This method combines two Monte Carlo algorithms known as entropy-sampling and scaled-collective-variable algorithms. Entropy-sampling Monte Carlo is able to sample a large configurational space even in a disordered system that has a large number of potential barriers. In contrast, scaled-collective-variable Monte Carlo provides an efficient sampling for a system whose dynamics is highly cooperative. Because a globular protein is a disordered system whose dynamics is characterized by collective motions, a combination of these two algorithms could provide an optimal Monte Carlo simulation for a globular protein. As a test case, we have carried out an ESCV Monte Carlo simulation for a cell adhesive Arg-Gly-Asp-containing peptide, Lys-Arg-Cys-Arg-Gly-Asp-Cys-Met-Asp, and determined the conformational distribution at 300 K. The peptide contains a disulfide bridge between the two cysteine residues. This bond mimics the strong geometrical constraints that result from a protein's globular nature and give rise to highly cooperative dynamics. Computation results show that the ESCV Monte Carlo was not trapped at any local minimum and that the canonical distribution was correctly determined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dynamic importance weighting is proposed as a Monte Carlo method that has the capability to sample relevant parts of the configuration space even in the presence of many steep energy minima. The method relies on an additional dynamic variable (the importance weight) to help the system overcome steep barriers. A non-Metropolis theory is developed for the construction of such weighted samplers. Algorithms based on this method are designed for simulation and global optimization tasks arising from multimodal sampling, neural network training, and the traveling salesman problem. Numerical tests on these problems confirm the effectiveness of the method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability of antigen-presenting cells to sample distinct intracellular compartments is crucial for microbe detection. Major histocompatibility complex class I and class II molecules sample the cytosol or the late endocytic compartment, allowing detection of microbial peptide antigens that arise in distinct intracellular compartments. In contrast, CD1a and CD1b molecules mediate the presentation of lipid and glycolipid antigens and differentially sample early recycling endosomes or late endocytic compartments, respectively, that contain distinct sets of lipid antigens. Here, we show that, unlike the other CD1 isoforms or major histocompatibility complex molecules that each sample restricted only intracellular compartments, CD1c is remarkable in that it distributes broadly throughout the endocytic system and is expressed in both recycling endosomes and late endocytic compartments. Further, in contrast to CD1b, which requires an acidic environment to function, antigen presentation by CD1c was able to overcome dependence on vesicular acidification. Because CD1c is expressed on essential antigen-presenting cells, such as epidermal Langerhans cells (in the absence of CD1b), or on B cells (without CD1a or -b), we suggest that CD1c molecules allow a comprehensive survey for lipid antigens throughout the endocytic system even in the absence of other CD1 isoforms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multielectrode recording techniques were used to record ensemble activity from 10 to 16 simultaneously active CA1 and CA3 neurons in the rat hippocampus during performance of a spatial delayed-nonmatch-to-sample task. Extracted sources of variance were used to assess the nature of two different types of errors that accounted for 30% of total trials. The two types of errors included ensemble “miscodes” of sample phase information and errors associated with delay-dependent corruption or disappearance of sample information at the time of the nonmatch response. Statistical assessment of trial sequences and associated “strength” of hippocampal ensemble codes revealed that miscoded error trials always followed delay-dependent error trials in which encoding was “weak,” indicating that the two types of errors were “linked.” It was determined that the occurrence of weakly encoded, delay-dependent error trials initiated an ensemble encoding “strategy” that increased the chances of being correct on the next trial and avoided the occurrence of further delay-dependent errors. Unexpectedly, the strategy involved “strongly” encoding response position information from the prior (delay-dependent) error trial and carrying it forward to the sample phase of the next trial. This produced a miscode type error on trials in which the “carried over” information obliterated encoding of the sample phase response on the next trial. Application of this strategy, irrespective of outcome, was sufficient to reorient the animal to the proper between trial sequence of response contingencies (nonmatch-to-sample) and boost performance to 73% correct on subsequent trials. The capacity for ensemble analyses of strength of information encoding combined with statistical assessment of trial sequences therefore provided unique insight into the “dynamic” nature of the role hippocampus plays in delay type memory tasks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A coarse-grained model for protein-folding dynamics is introduced based on a discretized representation of torsional modes. The model, based on the Ramachandran map of the local torsional potential surface and the class (hydrophobic/polar/neutral) of each residue, recognizes patterns of both torsional conformations and hydrophobic-polar contacts, with tolerance for imperfect patterns. It incorporates empirical rates for formation of secondary and tertiary structure. The method yields a topological representation of the evolving local torsional configuration of the folding protein, modulo the basins of the Ramachandran map. The folding process is modeled as a sequence of transitions from one contact pattern to another, as the torsional patterns evolve. We test the model by applying it to the folding process of bovine pancreatic trypsin inhibitor, obtaining a kinetic description of the transitions between the contact patterns visited by the protein along the dominant folding pathway. The kinetics and detailed balance make it possible to invert the result to obtain a coarse topographic description of the potential energy surface along the dominant folding pathway, in effect to go backward or forward between a topological representation of the chain conformation and a topographical description of the potential energy surface governing the folding process. As a result, the strong structure-seeking character of bovine pancreatic trypsin inhibitor and the principal features of its folding pathway are reproduced in a reasonably quantitative way.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report a general mass spectrometric approach for the rapid identification and characterization of proteins isolated by preparative two-dimensional polyacrylamide gel electrophoresis. This method possesses the inherent power to detect and structurally characterize covalent modifications. Absolute sensitivities of matrix-assisted laser desorption ionization and high-energy collision-induced dissociation tandem mass spectrometry are exploited to determine the mass and sequence of subpicomole sample quantities of tryptic peptides. These data permit mass matching and sequence homology searching of computerized peptide mass and protein sequence data bases for known proteins and design of oligonucleotide probes for cloning unknown proteins. We have identified 11 proteins in lysates of human A375 melanoma cells, including: alpha-enolase, cytokeratin, stathmin, protein disulfide isomerase, tropomyosin, Cu/Zn superoxide dismutase, nucleoside diphosphate kinase A, galaptin, and triosephosphate isomerase. We have characterized several posttranslational modifications and chemical modifications that may result from electrophoresis or subsequent sample processing steps. Detection of comigrating and covalently modified proteins illustrates the necessity of peptide sequencing and the advantages of tandem mass spectrometry to reliably and unambiguously establish the identity of each protein. This technology paves the way for studies of cell-type dependent gene expression and studies of large suites of cellular proteins with unprecedented speed and rigor to provide information complementary to the ongoing Human Genome Project.